基于聚类的可持续数控木雕机械能量建模

Sebastiano Marconi , Nicla Frigerio , Andrea Matta
{"title":"基于聚类的可持续数控木雕机械能量建模","authors":"Sebastiano Marconi ,&nbsp;Nicla Frigerio ,&nbsp;Andrea Matta","doi":"10.1016/j.procir.2024.12.024","DOIUrl":null,"url":null,"abstract":"<div><div>Energy efficiency in manufacturing is critical for achieving both economic and environmental sustainability. This study focuses on energy assessment and modelling for CNC woodcutting machine tools, comparing their behaviour to metal cutting machining centers. This work aims to provide a model for energy state identification and classification based on a data-driven approaches and focused on woodcutting machine tools. A novel, data-driven approach is proposed to classify the energy states of woodcutting machines using real-field sensor data. By integrating clustering methods and statistical techniques, the work develops an energy model tailored for woodcutting machinery. Validation through an industrial case study demonstrates the approach’s effectiveness in enhancing user awareness and optimizing energy consumption. Future applications include anomaly detection, cross-machine benchmarking, and predictive modeling to further improve machine performance and sustainability.</div></div>","PeriodicalId":20535,"journal":{"name":"Procedia CIRP","volume":"135 ","pages":"Pages 307-312"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clustering-Based Energy Modeling for Sustainable CNC Woodcutting Machinery\",\"authors\":\"Sebastiano Marconi ,&nbsp;Nicla Frigerio ,&nbsp;Andrea Matta\",\"doi\":\"10.1016/j.procir.2024.12.024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Energy efficiency in manufacturing is critical for achieving both economic and environmental sustainability. This study focuses on energy assessment and modelling for CNC woodcutting machine tools, comparing their behaviour to metal cutting machining centers. This work aims to provide a model for energy state identification and classification based on a data-driven approaches and focused on woodcutting machine tools. A novel, data-driven approach is proposed to classify the energy states of woodcutting machines using real-field sensor data. By integrating clustering methods and statistical techniques, the work develops an energy model tailored for woodcutting machinery. Validation through an industrial case study demonstrates the approach’s effectiveness in enhancing user awareness and optimizing energy consumption. Future applications include anomaly detection, cross-machine benchmarking, and predictive modeling to further improve machine performance and sustainability.</div></div>\",\"PeriodicalId\":20535,\"journal\":{\"name\":\"Procedia CIRP\",\"volume\":\"135 \",\"pages\":\"Pages 307-312\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Procedia CIRP\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212827125002781\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia CIRP","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212827125002781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

制造业的能源效率对于实现经济和环境的可持续性至关重要。本研究的重点是CNC木材切削机床的能量评估和建模,并将其与金属切削加工中心的行为进行比较。本研究旨在提供一种基于数据驱动方法的能量状态识别和分类模型,并以木工机床为研究对象。提出了一种新的、数据驱动的方法,利用实时传感器数据对伐木机的能量状态进行分类。通过整合聚类方法和统计技术,该工作开发了一个适合木雕机械的能量模型。通过工业案例研究验证了该方法在提高用户意识和优化能源消耗方面的有效性。未来的应用包括异常检测、跨机器基准测试和预测建模,以进一步提高机器性能和可持续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clustering-Based Energy Modeling for Sustainable CNC Woodcutting Machinery
Energy efficiency in manufacturing is critical for achieving both economic and environmental sustainability. This study focuses on energy assessment and modelling for CNC woodcutting machine tools, comparing their behaviour to metal cutting machining centers. This work aims to provide a model for energy state identification and classification based on a data-driven approaches and focused on woodcutting machine tools. A novel, data-driven approach is proposed to classify the energy states of woodcutting machines using real-field sensor data. By integrating clustering methods and statistical techniques, the work develops an energy model tailored for woodcutting machinery. Validation through an industrial case study demonstrates the approach’s effectiveness in enhancing user awareness and optimizing energy consumption. Future applications include anomaly detection, cross-machine benchmarking, and predictive modeling to further improve machine performance and sustainability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信