Dipankar Bhattacharya, T.K. Cheung, Yaxiang Wang, Darwin Lau
{"title":"复杂几何形状缆索驱动并联机器人缆索-物体干涉和缠绕的运动学和动力学建模","authors":"Dipankar Bhattacharya, T.K. Cheung, Yaxiang Wang, Darwin Lau","doi":"10.1016/j.mechmachtheory.2025.106092","DOIUrl":null,"url":null,"abstract":"<div><div>Cable-Driven Parallel Robots (CDPRs) use cables as actuators to maneuver rigid mobile-platform in a parallel mechanism setup. Typically, CDPR kinematic and dynamic models avoid cable-object (cable-mobile-platform and cable-obstacle) interferences to prevent sudden cable tension changes that could deviate the end-effector’s trajectory. However, allowing these interferences can lead to cable wrapping, where cables wrap around complex-shaped surfaces upon contact, enhancing the CDPR’s workspace and reducing its footprint. Despite the potential benefits, there currently exists no kinematic and dynamic model that effectively incorporates cable wrapping around such complex-shaped surfaces. This paper introduces a novel numerical-based kinematic and dynamic modeling framework for CDPRs that detects and then manages cable wrapping around mobile-platform and multiple obstacles with the assumption that the cables remain taut and for every position along the cable, there is a unique and smooth way to describe its location on the surface. Simulation and hardware results on various complex-shaped mobile-platform and obstacles show that the proposed model framework can be conveniently and effectively applied to the real-time modeling of cable wrapping. Code and videos available at: <span><span>https://github.com/bhattner143/GeoWrapSim-CDPR.git</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":"214 ","pages":"Article 106092"},"PeriodicalIF":4.5000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinematic and dynamic modeling of cable-object interference and wrapping in complex geometrical-shaped cable-driven parallel robots\",\"authors\":\"Dipankar Bhattacharya, T.K. Cheung, Yaxiang Wang, Darwin Lau\",\"doi\":\"10.1016/j.mechmachtheory.2025.106092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cable-Driven Parallel Robots (CDPRs) use cables as actuators to maneuver rigid mobile-platform in a parallel mechanism setup. Typically, CDPR kinematic and dynamic models avoid cable-object (cable-mobile-platform and cable-obstacle) interferences to prevent sudden cable tension changes that could deviate the end-effector’s trajectory. However, allowing these interferences can lead to cable wrapping, where cables wrap around complex-shaped surfaces upon contact, enhancing the CDPR’s workspace and reducing its footprint. Despite the potential benefits, there currently exists no kinematic and dynamic model that effectively incorporates cable wrapping around such complex-shaped surfaces. This paper introduces a novel numerical-based kinematic and dynamic modeling framework for CDPRs that detects and then manages cable wrapping around mobile-platform and multiple obstacles with the assumption that the cables remain taut and for every position along the cable, there is a unique and smooth way to describe its location on the surface. Simulation and hardware results on various complex-shaped mobile-platform and obstacles show that the proposed model framework can be conveniently and effectively applied to the real-time modeling of cable wrapping. Code and videos available at: <span><span>https://github.com/bhattner143/GeoWrapSim-CDPR.git</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":49845,\"journal\":{\"name\":\"Mechanism and Machine Theory\",\"volume\":\"214 \",\"pages\":\"Article 106092\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanism and Machine Theory\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0094114X25001818\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanism and Machine Theory","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094114X25001818","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Kinematic and dynamic modeling of cable-object interference and wrapping in complex geometrical-shaped cable-driven parallel robots
Cable-Driven Parallel Robots (CDPRs) use cables as actuators to maneuver rigid mobile-platform in a parallel mechanism setup. Typically, CDPR kinematic and dynamic models avoid cable-object (cable-mobile-platform and cable-obstacle) interferences to prevent sudden cable tension changes that could deviate the end-effector’s trajectory. However, allowing these interferences can lead to cable wrapping, where cables wrap around complex-shaped surfaces upon contact, enhancing the CDPR’s workspace and reducing its footprint. Despite the potential benefits, there currently exists no kinematic and dynamic model that effectively incorporates cable wrapping around such complex-shaped surfaces. This paper introduces a novel numerical-based kinematic and dynamic modeling framework for CDPRs that detects and then manages cable wrapping around mobile-platform and multiple obstacles with the assumption that the cables remain taut and for every position along the cable, there is a unique and smooth way to describe its location on the surface. Simulation and hardware results on various complex-shaped mobile-platform and obstacles show that the proposed model framework can be conveniently and effectively applied to the real-time modeling of cable wrapping. Code and videos available at: https://github.com/bhattner143/GeoWrapSim-CDPR.git.
期刊介绍:
Mechanism and Machine Theory provides a medium of communication between engineers and scientists engaged in research and development within the fields of knowledge embraced by IFToMM, the International Federation for the Promotion of Mechanism and Machine Science, therefore affiliated with IFToMM as its official research journal.
The main topics are:
Design Theory and Methodology;
Haptics and Human-Machine-Interfaces;
Robotics, Mechatronics and Micro-Machines;
Mechanisms, Mechanical Transmissions and Machines;
Kinematics, Dynamics, and Control of Mechanical Systems;
Applications to Bioengineering and Molecular Chemistry