具有振荡边界条件的可积非局部非线性Schrödinger方程:长时间渐近性

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED
Yan Rybalko , Dmitry Shepelsky , Shou-Fu Tian
{"title":"具有振荡边界条件的可积非局部非线性Schrödinger方程:长时间渐近性","authors":"Yan Rybalko ,&nbsp;Dmitry Shepelsky ,&nbsp;Shou-Fu Tian","doi":"10.1016/j.physd.2025.134820","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the Cauchy problem for the integrable nonlocal nonlinear Schrödinger equation <span><span><span><math><mrow><mi>i</mi><msub><mrow><mi>q</mi></mrow><mrow><mi>t</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>+</mo><msub><mrow><mi>q</mi></mrow><mrow><mi>x</mi><mi>x</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>+</mo><mn>2</mn><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mover><mrow><mi>q</mi></mrow><mrow><mo>̄</mo></mrow></mover><mrow><mo>(</mo><mo>−</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn><mo>,</mo></mrow></math></span></span></span>subject to the step-like initial data: <span><math><mrow><mi>q</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow><mo>→</mo><mn>0</mn></mrow></math></span> as <span><math><mrow><mi>x</mi><mo>→</mo><mo>−</mo><mi>∞</mi></mrow></math></span> and <span><math><mrow><mi>q</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow><mo>≃</mo><mi>A</mi><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn><mi>i</mi><mi>B</mi><mi>x</mi></mrow></msup></mrow></math></span> as <span><math><mrow><mi>x</mi><mo>→</mo><mi>∞</mi></mrow></math></span>, where <span><math><mrow><mi>A</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> and <span><math><mrow><mi>B</mi><mo>∈</mo><mi>R</mi></mrow></math></span>. The goal is to study the long-time asymptotic behavior of the solution of this problem assuming that <span><math><mrow><mi>q</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow></mrow></math></span> is close, in a certain spectral sense, to the “step-like” function <span><math><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>0</mn><mo>,</mo><mi>R</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mfenced><mrow><mtable><mtr><mtd><mn>0</mn><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>≤</mo><mi>R</mi><mo>,</mo></mtd></mtr><mtr><mtd><mi>A</mi><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn><mi>i</mi><mi>B</mi><mi>x</mi></mrow></msup><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>&gt;</mo><mi>R</mi><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></mrow></math></span> with <span><math><mrow><mi>R</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>. A special attention is paid to how <span><math><mrow><mi>B</mi><mo>≠</mo><mn>0</mn></mrow></math></span> affects the asymptotics.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"481 ","pages":"Article 134820"},"PeriodicalIF":2.7000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The integrable nonlocal nonlinear Schrödinger equation with oscillatory boundary conditions: Long-time asymptotics\",\"authors\":\"Yan Rybalko ,&nbsp;Dmitry Shepelsky ,&nbsp;Shou-Fu Tian\",\"doi\":\"10.1016/j.physd.2025.134820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider the Cauchy problem for the integrable nonlocal nonlinear Schrödinger equation <span><span><span><math><mrow><mi>i</mi><msub><mrow><mi>q</mi></mrow><mrow><mi>t</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>+</mo><msub><mrow><mi>q</mi></mrow><mrow><mi>x</mi><mi>x</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>+</mo><mn>2</mn><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mover><mrow><mi>q</mi></mrow><mrow><mo>̄</mo></mrow></mover><mrow><mo>(</mo><mo>−</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn><mo>,</mo></mrow></math></span></span></span>subject to the step-like initial data: <span><math><mrow><mi>q</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow><mo>→</mo><mn>0</mn></mrow></math></span> as <span><math><mrow><mi>x</mi><mo>→</mo><mo>−</mo><mi>∞</mi></mrow></math></span> and <span><math><mrow><mi>q</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow><mo>≃</mo><mi>A</mi><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn><mi>i</mi><mi>B</mi><mi>x</mi></mrow></msup></mrow></math></span> as <span><math><mrow><mi>x</mi><mo>→</mo><mi>∞</mi></mrow></math></span>, where <span><math><mrow><mi>A</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> and <span><math><mrow><mi>B</mi><mo>∈</mo><mi>R</mi></mrow></math></span>. The goal is to study the long-time asymptotic behavior of the solution of this problem assuming that <span><math><mrow><mi>q</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow></mrow></math></span> is close, in a certain spectral sense, to the “step-like” function <span><math><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>0</mn><mo>,</mo><mi>R</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mfenced><mrow><mtable><mtr><mtd><mn>0</mn><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>≤</mo><mi>R</mi><mo>,</mo></mtd></mtr><mtr><mtd><mi>A</mi><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn><mi>i</mi><mi>B</mi><mi>x</mi></mrow></msup><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>&gt;</mo><mi>R</mi><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></mrow></math></span> with <span><math><mrow><mi>R</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>. A special attention is paid to how <span><math><mrow><mi>B</mi><mo>≠</mo><mn>0</mn></mrow></math></span> affects the asymptotics.</div></div>\",\"PeriodicalId\":20050,\"journal\":{\"name\":\"Physica D: Nonlinear Phenomena\",\"volume\":\"481 \",\"pages\":\"Article 134820\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica D: Nonlinear Phenomena\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167278925002970\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925002970","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

考虑可积非局部非线性Schrödinger方程iqt(x,t)+qxx(x,t)+2q2(x,t)q′(−x,t)=0的Cauchy问题,其初始数据为:q(x,0)→0为x→−∞,q(x,0)≃Ae2iBx为x→∞,其中A>;0, B∈R。目的是研究假设q(x,0)在一定谱意义上接近于“阶梯”函数q0,R(x)=0,x≤R,Ae2iBx,x>;R,且R>;0时,该问题解的长期渐近行为。特别注意了B≠0对渐近的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The integrable nonlocal nonlinear Schrödinger equation with oscillatory boundary conditions: Long-time asymptotics
We consider the Cauchy problem for the integrable nonlocal nonlinear Schrödinger equation iqt(x,t)+qxx(x,t)+2q2(x,t)q̄(x,t)=0,subject to the step-like initial data: q(x,0)0 as x and q(x,0)Ae2iBx as x, where A>0 and BR. The goal is to study the long-time asymptotic behavior of the solution of this problem assuming that q(x,0) is close, in a certain spectral sense, to the “step-like” function q0,R(x)=0,xR,Ae2iBx,x>R, with R>0. A special attention is paid to how B0 affects the asymptotics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信