基于热阻网络模型的非晶薄膜热导率理论分析

IF 2.9 3区 物理与天体物理 Q3 NANOSCIENCE & NANOTECHNOLOGY
Qingxuan Wang , Puqing Jiang , Jun Zhou
{"title":"基于热阻网络模型的非晶薄膜热导率理论分析","authors":"Qingxuan Wang ,&nbsp;Puqing Jiang ,&nbsp;Jun Zhou","doi":"10.1016/j.physe.2025.116329","DOIUrl":null,"url":null,"abstract":"<div><div>Amorphous nanoscale thin films have attracted significant attention in advanced device research. We developed a thermal resistance network model to calculate the thermal conductivity of amorphous thin films and applied it to several materials, achieving results in agreement with the experimental data. Our theoretical model approaches the thermal transport in anisotropic disordered systems from a cluster-based perspective. While offering higher accuracy than other models, it also provides a simple physical picture to describe the anisotropic thermal conductivity behavior of amorphous thin films. The results are helpful for experimentally tuning the thermal conductivity of amorphous thin films and advancing the understanding of their thermal properties.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"173 ","pages":"Article 116329"},"PeriodicalIF":2.9000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical analysis of thermal conductivities of amorphous films based on thermal resistance network model\",\"authors\":\"Qingxuan Wang ,&nbsp;Puqing Jiang ,&nbsp;Jun Zhou\",\"doi\":\"10.1016/j.physe.2025.116329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Amorphous nanoscale thin films have attracted significant attention in advanced device research. We developed a thermal resistance network model to calculate the thermal conductivity of amorphous thin films and applied it to several materials, achieving results in agreement with the experimental data. Our theoretical model approaches the thermal transport in anisotropic disordered systems from a cluster-based perspective. While offering higher accuracy than other models, it also provides a simple physical picture to describe the anisotropic thermal conductivity behavior of amorphous thin films. The results are helpful for experimentally tuning the thermal conductivity of amorphous thin films and advancing the understanding of their thermal properties.</div></div>\",\"PeriodicalId\":20181,\"journal\":{\"name\":\"Physica E-low-dimensional Systems & Nanostructures\",\"volume\":\"173 \",\"pages\":\"Article 116329\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica E-low-dimensional Systems & Nanostructures\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1386947725001596\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947725001596","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

非晶纳米薄膜在先进器件研究中受到广泛关注。我们建立了一个热阻网络模型来计算非晶薄膜的热导率,并将其应用于几种材料,得到了与实验数据一致的结果。我们的理论模型从基于团簇的角度研究了各向异性无序系统的热输运。在提供比其他模型更高的精度的同时,它也提供了一个简单的物理图像来描述非晶薄膜的各向异性导热行为。研究结果有助于实验调节非晶薄膜的热导率,促进对非晶薄膜热性质的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Theoretical analysis of thermal conductivities of amorphous films based on thermal resistance network model
Amorphous nanoscale thin films have attracted significant attention in advanced device research. We developed a thermal resistance network model to calculate the thermal conductivity of amorphous thin films and applied it to several materials, achieving results in agreement with the experimental data. Our theoretical model approaches the thermal transport in anisotropic disordered systems from a cluster-based perspective. While offering higher accuracy than other models, it also provides a simple physical picture to describe the anisotropic thermal conductivity behavior of amorphous thin films. The results are helpful for experimentally tuning the thermal conductivity of amorphous thin films and advancing the understanding of their thermal properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
6.10%
发文量
356
审稿时长
65 days
期刊介绍: Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals. Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena. Keywords: • topological insulators/superconductors, majorana fermions, Wyel semimetals; • quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems; • layered superconductivity, low dimensional systems with superconducting proximity effect; • 2D materials such as transition metal dichalcogenides; • oxide heterostructures including ZnO, SrTiO3 etc; • carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.) • quantum wells and superlattices; • quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect; • optical- and phonons-related phenomena; • magnetic-semiconductor structures; • charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling; • ultra-fast nonlinear optical phenomena; • novel devices and applications (such as high performance sensor, solar cell, etc); • novel growth and fabrication techniques for nanostructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信