双CNN用于光伏电致发光图像微裂纹检测

IF 4.5 Q2 COMPUTER SCIENCE, THEORY & METHODS
Array Pub Date : 2025-07-12 DOI:10.1016/j.array.2025.100442
Khouloud Samrouth , Souha Nazir , Nader Bakir , Nadine Khodor
{"title":"双CNN用于光伏电致发光图像微裂纹检测","authors":"Khouloud Samrouth ,&nbsp;Souha Nazir ,&nbsp;Nader Bakir ,&nbsp;Nadine Khodor","doi":"10.1016/j.array.2025.100442","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate detection of microcracks in photovoltaic (PV) cells is crucial for ensuring the efficiency and longevity of solar panels. This study proposes a dual convolutional neural network (Dual-CNN) architecture to enhance microcrack detection in electroluminescence (EL) PV images. By integrating shallow feature extraction with deep semantic analysis, the proposed model effectively captures both fine-grained local textures and high-level structural patterns, addressing the limitations of conventional single-stream CNN models that primarily focus on coarse-grained features. Experimental evaluations on an EL image dataset demonstrate that the Dual-CNN approach significantly improves defect localization and classification with an accuracy of 85.33%, a recall of 71.71% and an F1 score of 73.9%, paving the way for more robust and automated PV inspection systems in the solar energy sector.</div></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":"27 ","pages":"Article 100442"},"PeriodicalIF":4.5000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual CNN for photovoltaic electroluminescence images microcrack detection\",\"authors\":\"Khouloud Samrouth ,&nbsp;Souha Nazir ,&nbsp;Nader Bakir ,&nbsp;Nadine Khodor\",\"doi\":\"10.1016/j.array.2025.100442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate detection of microcracks in photovoltaic (PV) cells is crucial for ensuring the efficiency and longevity of solar panels. This study proposes a dual convolutional neural network (Dual-CNN) architecture to enhance microcrack detection in electroluminescence (EL) PV images. By integrating shallow feature extraction with deep semantic analysis, the proposed model effectively captures both fine-grained local textures and high-level structural patterns, addressing the limitations of conventional single-stream CNN models that primarily focus on coarse-grained features. Experimental evaluations on an EL image dataset demonstrate that the Dual-CNN approach significantly improves defect localization and classification with an accuracy of 85.33%, a recall of 71.71% and an F1 score of 73.9%, paving the way for more robust and automated PV inspection systems in the solar energy sector.</div></div>\",\"PeriodicalId\":8417,\"journal\":{\"name\":\"Array\",\"volume\":\"27 \",\"pages\":\"Article 100442\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Array\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590005625000694\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Array","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590005625000694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

准确检测光伏电池微裂纹对于保证太阳能电池板的使用效率和寿命至关重要。本研究提出了一种双卷积神经网络(dual - cnn)架构来增强电致发光(EL) PV图像的微裂纹检测。通过将浅层特征提取与深层语义分析相结合,该模型有效地捕获了细粒度的局部纹理和高级结构模式,解决了传统单流CNN模型主要关注粗粒度特征的局限性。在EL图像数据集上的实验评估表明,Dual-CNN方法显著改善了缺陷定位和分类,准确率为85.33%,召回率为71.71%,F1得分为73.9%,为太阳能领域更强大的自动化光伏检测系统铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dual CNN for photovoltaic electroluminescence images microcrack detection

Dual CNN for photovoltaic electroluminescence images microcrack detection
Accurate detection of microcracks in photovoltaic (PV) cells is crucial for ensuring the efficiency and longevity of solar panels. This study proposes a dual convolutional neural network (Dual-CNN) architecture to enhance microcrack detection in electroluminescence (EL) PV images. By integrating shallow feature extraction with deep semantic analysis, the proposed model effectively captures both fine-grained local textures and high-level structural patterns, addressing the limitations of conventional single-stream CNN models that primarily focus on coarse-grained features. Experimental evaluations on an EL image dataset demonstrate that the Dual-CNN approach significantly improves defect localization and classification with an accuracy of 85.33%, a recall of 71.71% and an F1 score of 73.9%, paving the way for more robust and automated PV inspection systems in the solar energy sector.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Array
Array Computer Science-General Computer Science
CiteScore
4.40
自引率
0.00%
发文量
93
审稿时长
45 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信