具有轻尾的永续与局部依赖测度

IF 1.2 2区 数学 Q3 STATISTICS & PROBABILITY
Julia Le Bihan, Bartosz Kołodziejek
{"title":"具有轻尾的永续与局部依赖测度","authors":"Julia Le Bihan,&nbsp;Bartosz Kołodziejek","doi":"10.1016/j.spa.2025.104740","DOIUrl":null,"url":null,"abstract":"<div><div>This work investigates the tail behavior of solutions to the affine stochastic fixed-point equation of the form <span><math><mrow><mi>X</mi><mover><mrow><mo>=</mo></mrow><mrow><mrow><mi>d</mi></mrow></mrow></mover><mi>A</mi><mi>X</mi><mo>+</mo><mi>B</mi></mrow></math></span>, where <span><math><mi>X</mi></math></span> and <span><math><mrow><mo>(</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>)</mo></mrow></math></span> are independent. Focusing on the light-tail regime, following (Burdzy et al., 2022), we introduce a local dependence measure along with an associated Legendre-type transform. These tools allow us to effectively describe the logarithmic right-tail asymptotics of the solution <span><math><mi>X</mi></math></span>.</div><div>Moreover, we extend our analysis to a related recursive sequence <span><math><mrow><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span>, where <span><math><msub><mrow><mrow><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>n</mi></mrow></msub></math></span> are i.i.d. copies of <span><math><mrow><mo>(</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>)</mo></mrow></math></span>. For this sequence, we construct deterministic scaling <span><math><msub><mrow><mrow><mo>(</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>n</mi></mrow></msub></math></span> such that <span><math><mrow><msub><mrow><mo>lim sup</mo></mrow><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></msub><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>/</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> is a.s. positive and finite, with its non-random explicit value provided.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"190 ","pages":"Article 104740"},"PeriodicalIF":1.2000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Perpetuities with light tails and the local dependence measure\",\"authors\":\"Julia Le Bihan,&nbsp;Bartosz Kołodziejek\",\"doi\":\"10.1016/j.spa.2025.104740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work investigates the tail behavior of solutions to the affine stochastic fixed-point equation of the form <span><math><mrow><mi>X</mi><mover><mrow><mo>=</mo></mrow><mrow><mrow><mi>d</mi></mrow></mrow></mover><mi>A</mi><mi>X</mi><mo>+</mo><mi>B</mi></mrow></math></span>, where <span><math><mi>X</mi></math></span> and <span><math><mrow><mo>(</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>)</mo></mrow></math></span> are independent. Focusing on the light-tail regime, following (Burdzy et al., 2022), we introduce a local dependence measure along with an associated Legendre-type transform. These tools allow us to effectively describe the logarithmic right-tail asymptotics of the solution <span><math><mi>X</mi></math></span>.</div><div>Moreover, we extend our analysis to a related recursive sequence <span><math><mrow><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span>, where <span><math><msub><mrow><mrow><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>n</mi></mrow></msub></math></span> are i.i.d. copies of <span><math><mrow><mo>(</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>)</mo></mrow></math></span>. For this sequence, we construct deterministic scaling <span><math><msub><mrow><mrow><mo>(</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>n</mi></mrow></msub></math></span> such that <span><math><mrow><msub><mrow><mo>lim sup</mo></mrow><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></msub><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>/</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> is a.s. positive and finite, with its non-random explicit value provided.</div></div>\",\"PeriodicalId\":51160,\"journal\":{\"name\":\"Stochastic Processes and their Applications\",\"volume\":\"190 \",\"pages\":\"Article 104740\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Processes and their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304414925001838\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414925001838","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了形式为X=dAX+B的仿射随机不动点方程解的尾部行为,其中X和(A,B)是独立的。关注光尾状态,接下来(burzy et al., 2022),我们引入了一个局部依赖度量以及相关的legende型变换。这些工具使我们能够有效地描述解x的对数右尾渐近性。此外,我们将分析扩展到相关的递归序列Xn=AnXn−1+Bn,其中(An,Bn)n是(a,B)的iid个副本。对于这个序列,我们构造了确定性标度(fn)n,使得lim supn→∞Xn/fn是正有限的,并给出了它的非随机显式值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Perpetuities with light tails and the local dependence measure
This work investigates the tail behavior of solutions to the affine stochastic fixed-point equation of the form X=dAX+B, where X and (A,B) are independent. Focusing on the light-tail regime, following (Burdzy et al., 2022), we introduce a local dependence measure along with an associated Legendre-type transform. These tools allow us to effectively describe the logarithmic right-tail asymptotics of the solution X.
Moreover, we extend our analysis to a related recursive sequence Xn=AnXn1+Bn, where (An,Bn)n are i.i.d. copies of (A,B). For this sequence, we construct deterministic scaling (fn)n such that lim supnXn/fn is a.s. positive and finite, with its non-random explicit value provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信