鲁棒均值估计量的一致界

IF 1.2 2区 数学 Q3 STATISTICS & PROBABILITY
Stanislav Minsker
{"title":"鲁棒均值估计量的一致界","authors":"Stanislav Minsker","doi":"10.1016/j.spa.2025.104724","DOIUrl":null,"url":null,"abstract":"<div><div>We study estimators of the means of a family of random variables <span><math><mrow><mo>{</mo><mi>f</mi><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow><mo>,</mo><mspace></mspace><mi>f</mi><mo>∈</mo><mi>F</mi><mo>}</mo></mrow></math></span> that admit uniform, over the class <span><math><mi>F</mi></math></span> of real-valued functions, non-asymptotic error bounds under minimal moment assumptions on the underlying distribution. We show that known robust methods, such as the median-of-means and Catoni’s estimators, can often be viewed as special cases of our construction. The paper’s primary contribution lies in establishing uniform bounds for the deviations of stochastic processes defined by the proposed estimators. Furthermore, we analyze the stability of these estimators within the context of the ‘adversarial contamination’ framework. Finally, we demonstrate the applicability of our methods to the problem of robust multivariate mean estimation, showing that the resulting inequalities achieve optimal dependence on the parameters of the problem.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"190 ","pages":"Article 104724"},"PeriodicalIF":1.2000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniform bounds for robust mean estimators\",\"authors\":\"Stanislav Minsker\",\"doi\":\"10.1016/j.spa.2025.104724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study estimators of the means of a family of random variables <span><math><mrow><mo>{</mo><mi>f</mi><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow><mo>,</mo><mspace></mspace><mi>f</mi><mo>∈</mo><mi>F</mi><mo>}</mo></mrow></math></span> that admit uniform, over the class <span><math><mi>F</mi></math></span> of real-valued functions, non-asymptotic error bounds under minimal moment assumptions on the underlying distribution. We show that known robust methods, such as the median-of-means and Catoni’s estimators, can often be viewed as special cases of our construction. The paper’s primary contribution lies in establishing uniform bounds for the deviations of stochastic processes defined by the proposed estimators. Furthermore, we analyze the stability of these estimators within the context of the ‘adversarial contamination’ framework. Finally, we demonstrate the applicability of our methods to the problem of robust multivariate mean estimation, showing that the resulting inequalities achieve optimal dependence on the parameters of the problem.</div></div>\",\"PeriodicalId\":51160,\"journal\":{\"name\":\"Stochastic Processes and their Applications\",\"volume\":\"190 \",\"pages\":\"Article 104724\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Processes and their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304414925001656\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414925001656","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

研究了一类随机变量{f(X),f∈f}的均值估计,这些随机变量在实值函数的f类上,在底层分布的最小矩假设下具有一致的非渐近误差界。我们表明,已知的鲁棒方法,如中位数估计和Catoni估计,通常可以被视为我们的构造的特殊情况。本文的主要贡献在于为所提出的估计量所定义的随机过程的偏差建立了统一的界。此外,我们在“对抗性污染”框架的背景下分析了这些估计器的稳定性。最后,我们证明了我们的方法对鲁棒多元均值估计问题的适用性,表明所得到的不等式对问题的参数实现了最优依赖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uniform bounds for robust mean estimators
We study estimators of the means of a family of random variables {f(X),fF} that admit uniform, over the class F of real-valued functions, non-asymptotic error bounds under minimal moment assumptions on the underlying distribution. We show that known robust methods, such as the median-of-means and Catoni’s estimators, can often be viewed as special cases of our construction. The paper’s primary contribution lies in establishing uniform bounds for the deviations of stochastic processes defined by the proposed estimators. Furthermore, we analyze the stability of these estimators within the context of the ‘adversarial contamination’ framework. Finally, we demonstrate the applicability of our methods to the problem of robust multivariate mean estimation, showing that the resulting inequalities achieve optimal dependence on the parameters of the problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信