{"title":"非线性Graphon平均场系统","authors":"Fabio Coppini , Anna De Crescenzo , Huyên Pham","doi":"10.1016/j.spa.2025.104728","DOIUrl":null,"url":null,"abstract":"<div><div>We address a system of weakly interacting particles where the heterogeneous connections among the particles are described by a graph sequence and the number of particles grows to infinity. Our results extend the existing law of large numbers and propagation of chaos results to the case where the interaction between one particle and its neighbours is expressed as a nonlinear function of the local empirical measure. In the limit of the number of particles which tends to infinity, if the graph sequence converges to a graphon, then we show that the limit system is described by an infinite collection of processes and can be seen as a process in a suitable <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> space constructed via a Fubini extension. The proof is built on decoupling techniques and careful estimates of the Wasserstein distance.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"190 ","pages":"Article 104728"},"PeriodicalIF":1.2000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear Graphon mean-field systems\",\"authors\":\"Fabio Coppini , Anna De Crescenzo , Huyên Pham\",\"doi\":\"10.1016/j.spa.2025.104728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We address a system of weakly interacting particles where the heterogeneous connections among the particles are described by a graph sequence and the number of particles grows to infinity. Our results extend the existing law of large numbers and propagation of chaos results to the case where the interaction between one particle and its neighbours is expressed as a nonlinear function of the local empirical measure. In the limit of the number of particles which tends to infinity, if the graph sequence converges to a graphon, then we show that the limit system is described by an infinite collection of processes and can be seen as a process in a suitable <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> space constructed via a Fubini extension. The proof is built on decoupling techniques and careful estimates of the Wasserstein distance.</div></div>\",\"PeriodicalId\":51160,\"journal\":{\"name\":\"Stochastic Processes and their Applications\",\"volume\":\"190 \",\"pages\":\"Article 104728\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Processes and their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304414925001693\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414925001693","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
We address a system of weakly interacting particles where the heterogeneous connections among the particles are described by a graph sequence and the number of particles grows to infinity. Our results extend the existing law of large numbers and propagation of chaos results to the case where the interaction between one particle and its neighbours is expressed as a nonlinear function of the local empirical measure. In the limit of the number of particles which tends to infinity, if the graph sequence converges to a graphon, then we show that the limit system is described by an infinite collection of processes and can be seen as a process in a suitable space constructed via a Fubini extension. The proof is built on decoupling techniques and careful estimates of the Wasserstein distance.
期刊介绍:
Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests.
Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.