局部迭代(Δ + 1)-在次线性(Δ)轮中着色

IF 0.9 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Xinyu Fu , Yitong Yin , Chaodong Zheng
{"title":"局部迭代(Δ + 1)-在次线性(Δ)轮中着色","authors":"Xinyu Fu ,&nbsp;Yitong Yin ,&nbsp;Chaodong Zheng","doi":"10.1016/j.tcs.2025.115456","DOIUrl":null,"url":null,"abstract":"<div><div>Distributed graph coloring is one of the most extensively studied problems in distributed computing. There is a canonical family of distributed graph coloring algorithms known as the <em>locally-iterative</em> coloring algorithms, first formalized in Szegedy and Vishwanathan (1993) <span><span>[6]</span></span>. In such algorithms, every vertex iteratively updates its own color according to a predetermined function of the current coloring of its local neighborhood. Due to the simplicity and naturalness of its framework, locally-iterative coloring algorithms are of great significance both in theory and practice.</div><div>In this paper, we give a locally-iterative <span><math><mo>(</mo><mi>Δ</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-coloring algorithm with runtime <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>Δ</mi></mrow><mrow><mn>3</mn><mo>/</mo><mn>4</mn></mrow></msup><mi>log</mi><mo>⁡</mo><mi>Δ</mi><mo>)</mo><mo>+</mo><msup><mrow><mi>log</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>⁡</mo><mi>n</mi></math></span>, using messages of size <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> bits. This is the first locally-iterative <span><math><mo>(</mo><mi>Δ</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-coloring algorithm with sublinear-in-Δ runtime, and answers the main open question raised by previous best result (Barenboim et al. (2021) <span><span>[16]</span></span>). The key component of our algorithm is a new locally-iterative procedure that transforms an <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span>-coloring to a <span><math><mo>(</mo><mi>Δ</mi><mo>+</mo><mi>O</mi><mo>(</mo><msup><mrow><mi>Δ</mi></mrow><mrow><mn>3</mn><mo>/</mo><mn>4</mn></mrow></msup><mi>log</mi><mo>⁡</mo><mi>Δ</mi><mo>)</mo><mo>)</mo></math></span>-coloring in <span><math><mi>o</mi><mo>(</mo><mi>Δ</mi><mo>)</mo></math></span> time. As an application of our result, we also devise a self-stabilizing algorithm for <span><math><mo>(</mo><mi>Δ</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-coloring with <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>Δ</mi></mrow><mrow><mn>3</mn><mo>/</mo><mn>4</mn></mrow></msup><mi>log</mi><mo>⁡</mo><mi>Δ</mi><mo>)</mo><mo>+</mo><msup><mrow><mi>log</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>⁡</mo><mi>n</mi></math></span> stabilization time, using <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span>-bit messages. To the best of our knowledge, this is the first self-stabilizing algorithm for <span><math><mo>(</mo><mi>Δ</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-coloring in the CONGEST model with sublinear-in-Δ stabilization time.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1052 ","pages":"Article 115456"},"PeriodicalIF":0.9000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Locally-iterative (Δ + 1)-coloring in sublinear (in Δ) rounds\",\"authors\":\"Xinyu Fu ,&nbsp;Yitong Yin ,&nbsp;Chaodong Zheng\",\"doi\":\"10.1016/j.tcs.2025.115456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Distributed graph coloring is one of the most extensively studied problems in distributed computing. There is a canonical family of distributed graph coloring algorithms known as the <em>locally-iterative</em> coloring algorithms, first formalized in Szegedy and Vishwanathan (1993) <span><span>[6]</span></span>. In such algorithms, every vertex iteratively updates its own color according to a predetermined function of the current coloring of its local neighborhood. Due to the simplicity and naturalness of its framework, locally-iterative coloring algorithms are of great significance both in theory and practice.</div><div>In this paper, we give a locally-iterative <span><math><mo>(</mo><mi>Δ</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-coloring algorithm with runtime <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>Δ</mi></mrow><mrow><mn>3</mn><mo>/</mo><mn>4</mn></mrow></msup><mi>log</mi><mo>⁡</mo><mi>Δ</mi><mo>)</mo><mo>+</mo><msup><mrow><mi>log</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>⁡</mo><mi>n</mi></math></span>, using messages of size <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> bits. This is the first locally-iterative <span><math><mo>(</mo><mi>Δ</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-coloring algorithm with sublinear-in-Δ runtime, and answers the main open question raised by previous best result (Barenboim et al. (2021) <span><span>[16]</span></span>). The key component of our algorithm is a new locally-iterative procedure that transforms an <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span>-coloring to a <span><math><mo>(</mo><mi>Δ</mi><mo>+</mo><mi>O</mi><mo>(</mo><msup><mrow><mi>Δ</mi></mrow><mrow><mn>3</mn><mo>/</mo><mn>4</mn></mrow></msup><mi>log</mi><mo>⁡</mo><mi>Δ</mi><mo>)</mo><mo>)</mo></math></span>-coloring in <span><math><mi>o</mi><mo>(</mo><mi>Δ</mi><mo>)</mo></math></span> time. As an application of our result, we also devise a self-stabilizing algorithm for <span><math><mo>(</mo><mi>Δ</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-coloring with <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>Δ</mi></mrow><mrow><mn>3</mn><mo>/</mo><mn>4</mn></mrow></msup><mi>log</mi><mo>⁡</mo><mi>Δ</mi><mo>)</mo><mo>+</mo><msup><mrow><mi>log</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>⁡</mo><mi>n</mi></math></span> stabilization time, using <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span>-bit messages. To the best of our knowledge, this is the first self-stabilizing algorithm for <span><math><mo>(</mo><mi>Δ</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-coloring in the CONGEST model with sublinear-in-Δ stabilization time.</div></div>\",\"PeriodicalId\":49438,\"journal\":{\"name\":\"Theoretical Computer Science\",\"volume\":\"1052 \",\"pages\":\"Article 115456\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304397525003949\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397525003949","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

分布式图着色是分布式计算中研究最广泛的问题之一。有一种规范的分布式图着色算法,称为局部迭代着色算法,在Szegedy和Vishwanathan(1993)[6]中首次形式化。在这种算法中,每个顶点根据其局部邻域当前颜色的预定函数迭代更新自己的颜色。局部迭代着色算法由于其框架的简单性和自然性,在理论和实践中都具有重要意义。在本文中,我们给出了一个局部迭代(Δ+1)着色算法,运行时间为O(Δ3/4log (Δ))+log (n),使用大小为O(log (n)位的消息。这是第一个在-Δ运行时具有亚线性的局部迭代(Δ+1)着色算法,并回答了先前最佳结果(Barenboim et al.(2021)[16])提出的主要开放性问题。我们算法的关键部分是一个新的局部迭代过程,它在O(Δ)时间内将O(Δ2)着色转换为(Δ+O(Δ3/4log (Δ)))着色。作为我们的结果的一个应用,我们还设计了一个自稳定算法(Δ+1)-着色,使用O(Δ3/4log (Δ))+log (n)稳定时间,使用O(log (n)位消息。据我们所知,这是在具有亚线性- -Δ稳定时间的CONGEST模型中(Δ+1)-着色的第一个自稳定算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Locally-iterative (Δ + 1)-coloring in sublinear (in Δ) rounds
Distributed graph coloring is one of the most extensively studied problems in distributed computing. There is a canonical family of distributed graph coloring algorithms known as the locally-iterative coloring algorithms, first formalized in Szegedy and Vishwanathan (1993) [6]. In such algorithms, every vertex iteratively updates its own color according to a predetermined function of the current coloring of its local neighborhood. Due to the simplicity and naturalness of its framework, locally-iterative coloring algorithms are of great significance both in theory and practice.
In this paper, we give a locally-iterative (Δ+1)-coloring algorithm with runtime O(Δ3/4logΔ)+logn, using messages of size O(logn) bits. This is the first locally-iterative (Δ+1)-coloring algorithm with sublinear-in-Δ runtime, and answers the main open question raised by previous best result (Barenboim et al. (2021) [16]). The key component of our algorithm is a new locally-iterative procedure that transforms an O(Δ2)-coloring to a (Δ+O(Δ3/4logΔ))-coloring in o(Δ) time. As an application of our result, we also devise a self-stabilizing algorithm for (Δ+1)-coloring with O(Δ3/4logΔ)+logn stabilization time, using O(logn)-bit messages. To the best of our knowledge, this is the first self-stabilizing algorithm for (Δ+1)-coloring in the CONGEST model with sublinear-in-Δ stabilization time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical Computer Science
Theoretical Computer Science 工程技术-计算机:理论方法
CiteScore
2.60
自引率
18.20%
发文量
471
审稿时长
12.6 months
期刊介绍: Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信