TiO2/GNP/聚合物纳米复合材料矩形板几何非线性高阶剪切变形模型:力学性能和非线性主共振特征的数值研究

IF 2.8 3区 工程技术 Q2 MECHANICS
Raheb Gholami , Reza Ansari , Mohammad Kazem Hassanzadeh-Aghdam , Saeid Sahmani
{"title":"TiO2/GNP/聚合物纳米复合材料矩形板几何非线性高阶剪切变形模型:力学性能和非线性主共振特征的数值研究","authors":"Raheb Gholami ,&nbsp;Reza Ansari ,&nbsp;Mohammad Kazem Hassanzadeh-Aghdam ,&nbsp;Saeid Sahmani","doi":"10.1016/j.ijnonlinmec.2025.105209","DOIUrl":null,"url":null,"abstract":"<div><div>Nonlinear primary resonance behavior of titanium dioxide (TiO<sub>2</sub>)/graphene nanoplatelet (GNP)/polymer nanocomposite rectangular plates using a geometrically nonlinear higher-order shear deformable plate model is investigated. The material properties of the hybrid nanocomposite, consisting of a polymer matrix reinforced with TiO<sub>2</sub> nanoparticles and GNPs are determined through the finite element-based micromechanical modeling. The representative volume elements (RVEs) account for nanofiller geometry, dispersion patterns, and interphase effects to accurately simulate the mechanical properties of the nanocomposite. The nonlinear governing equations of motion are derived using Reddy's third-order shear deformation theory and von Kármán nonlinearity and are discretized via the generalized differential quadrature (GDQ) method. The equations are solved using a multistage numerical procedure combining the Galerkin approach, time periodic discretization (TPD) scheme, and pseudo-arc length continuation technique to obtain nonlinear frequency-response curves under various boundary conditions. The results highlight the pronounced contribution of GNP reinforcement, which significantly enhances the stiffness and nonlinear hardening behavior of the plates, as evidenced by increased linear and nonlinear frequencies and reduced vibration amplitudes.</div></div>","PeriodicalId":50303,"journal":{"name":"International Journal of Non-Linear Mechanics","volume":"178 ","pages":"Article 105209"},"PeriodicalIF":2.8000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometrically nonlinear higher-order shear deformable model of TiO2/GNP/polymer nanocomposite rectangular plates: A numerical study on mechanical properties and nonlinear primary resonance features\",\"authors\":\"Raheb Gholami ,&nbsp;Reza Ansari ,&nbsp;Mohammad Kazem Hassanzadeh-Aghdam ,&nbsp;Saeid Sahmani\",\"doi\":\"10.1016/j.ijnonlinmec.2025.105209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nonlinear primary resonance behavior of titanium dioxide (TiO<sub>2</sub>)/graphene nanoplatelet (GNP)/polymer nanocomposite rectangular plates using a geometrically nonlinear higher-order shear deformable plate model is investigated. The material properties of the hybrid nanocomposite, consisting of a polymer matrix reinforced with TiO<sub>2</sub> nanoparticles and GNPs are determined through the finite element-based micromechanical modeling. The representative volume elements (RVEs) account for nanofiller geometry, dispersion patterns, and interphase effects to accurately simulate the mechanical properties of the nanocomposite. The nonlinear governing equations of motion are derived using Reddy's third-order shear deformation theory and von Kármán nonlinearity and are discretized via the generalized differential quadrature (GDQ) method. The equations are solved using a multistage numerical procedure combining the Galerkin approach, time periodic discretization (TPD) scheme, and pseudo-arc length continuation technique to obtain nonlinear frequency-response curves under various boundary conditions. The results highlight the pronounced contribution of GNP reinforcement, which significantly enhances the stiffness and nonlinear hardening behavior of the plates, as evidenced by increased linear and nonlinear frequencies and reduced vibration amplitudes.</div></div>\",\"PeriodicalId\":50303,\"journal\":{\"name\":\"International Journal of Non-Linear Mechanics\",\"volume\":\"178 \",\"pages\":\"Article 105209\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Non-Linear Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020746225001970\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Non-Linear Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020746225001970","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

采用几何非线性高阶剪切变形板模型研究了二氧化钛(TiO2)/石墨烯纳米板(GNP)/聚合物纳米复合材料矩形板的非线性主共振行为。通过基于有限元的微观力学建模,确定了由TiO2纳米粒子和GNPs增强的聚合物基体组成的杂化纳米复合材料的材料性能。代表性体积元(RVEs)考虑了纳米填料的几何形状、分散模式和界面效应,以准确模拟纳米复合材料的力学性能。利用Reddy的三阶剪切变形理论和von Kármán非线性推导了非线性运动控制方程,并采用广义微分正交(GDQ)方法进行了离散化。采用Galerkin方法、时间周期离散化(TPD)格式和伪弧长延拓技术相结合的多级数值求解方法,得到了不同边界条件下的非线性频率响应曲线。结果表明GNP的显著贡献,显著提高了板的刚度和非线性硬化行为,表现为线性和非线性频率的增加以及振动幅值的降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometrically nonlinear higher-order shear deformable model of TiO2/GNP/polymer nanocomposite rectangular plates: A numerical study on mechanical properties and nonlinear primary resonance features
Nonlinear primary resonance behavior of titanium dioxide (TiO2)/graphene nanoplatelet (GNP)/polymer nanocomposite rectangular plates using a geometrically nonlinear higher-order shear deformable plate model is investigated. The material properties of the hybrid nanocomposite, consisting of a polymer matrix reinforced with TiO2 nanoparticles and GNPs are determined through the finite element-based micromechanical modeling. The representative volume elements (RVEs) account for nanofiller geometry, dispersion patterns, and interphase effects to accurately simulate the mechanical properties of the nanocomposite. The nonlinear governing equations of motion are derived using Reddy's third-order shear deformation theory and von Kármán nonlinearity and are discretized via the generalized differential quadrature (GDQ) method. The equations are solved using a multistage numerical procedure combining the Galerkin approach, time periodic discretization (TPD) scheme, and pseudo-arc length continuation technique to obtain nonlinear frequency-response curves under various boundary conditions. The results highlight the pronounced contribution of GNP reinforcement, which significantly enhances the stiffness and nonlinear hardening behavior of the plates, as evidenced by increased linear and nonlinear frequencies and reduced vibration amplitudes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.50
自引率
9.40%
发文量
192
审稿时长
67 days
期刊介绍: The International Journal of Non-Linear Mechanics provides a specific medium for dissemination of high-quality research results in the various areas of theoretical, applied, and experimental mechanics of solids, fluids, structures, and systems where the phenomena are inherently non-linear. The journal brings together original results in non-linear problems in elasticity, plasticity, dynamics, vibrations, wave-propagation, rheology, fluid-structure interaction systems, stability, biomechanics, micro- and nano-structures, materials, metamaterials, and in other diverse areas. Papers may be analytical, computational or experimental in nature. Treatments of non-linear differential equations wherein solutions and properties of solutions are emphasized but physical aspects are not adequately relevant, will not be considered for possible publication. Both deterministic and stochastic approaches are fostered. Contributions pertaining to both established and emerging fields are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信