使用可解释的机器学习预测胃癌对基于免疫治疗的联合治疗的反应的多模态放射病理学特征

IF 10.1 1区 医学 Q1 ONCOLOGY
Weicai Huang , Xiaoyan Wang , Rou Zhong , Zhe Li , Kangneng Zhou , Qing Lyu , James Edward Han , Tao Chen , Md Tauhidul Islam , Qingyu Yuan , M. Usman Ahmad , Sitong Chen , Chuanli Chen , Jiongqiang Huang , Jingjing Xie , Yunhao Shen , Wenjun Xiong , Lin Shen , Yikai Xu , Fan Yang , Yuming Jiang
{"title":"使用可解释的机器学习预测胃癌对基于免疫治疗的联合治疗的反应的多模态放射病理学特征","authors":"Weicai Huang ,&nbsp;Xiaoyan Wang ,&nbsp;Rou Zhong ,&nbsp;Zhe Li ,&nbsp;Kangneng Zhou ,&nbsp;Qing Lyu ,&nbsp;James Edward Han ,&nbsp;Tao Chen ,&nbsp;Md Tauhidul Islam ,&nbsp;Qingyu Yuan ,&nbsp;M. Usman Ahmad ,&nbsp;Sitong Chen ,&nbsp;Chuanli Chen ,&nbsp;Jiongqiang Huang ,&nbsp;Jingjing Xie ,&nbsp;Yunhao Shen ,&nbsp;Wenjun Xiong ,&nbsp;Lin Shen ,&nbsp;Yikai Xu ,&nbsp;Fan Yang ,&nbsp;Yuming Jiang","doi":"10.1016/j.canlet.2025.217930","DOIUrl":null,"url":null,"abstract":"<div><div>Immunotherapy has become a cornerstone in the treatment of advanced gastric cancer (GC). However, identifying reliable predictive biomarkers remains a considerable challenge. This study demonstrates the potential of integrating multimodal baseline data, including computed tomography scan images and digital H&amp;E-stained pathology images, with biological interpretation to predict the response to immunotherapy-based combination therapy using a multicenter cohort of 298 GC patients. By employing seven machine learning approaches, we developed a radiopathomics signature (RPS) to predict treatment response and stratify prognostic risk in GC. The RPS demonstrated area under the receiver-operating-characteristic curves (AUCs) of 0.978 (95 % CI, 0.950–1.000), 0.863 (95 % CI, 0.744–0.982), and 0.822 (95 % CI, 0.668–0.975) in the training, internal validation, and external validation cohorts, respectively, outperforming conventional biomarkers such as CPS, MSI-H, EBV, and HER-2. Kaplan-Meier analysis revealed significant differences of survival between high- and low-risk groups, especially in advanced-stage and non-surgical patients. Additionally, genetic analyses revealed that the RPS correlates with enhanced immune regulation pathways and increased infiltration of memory B cells. The interpretable RPS provides accurate predictions for treatment response and prognosis in GC and holds potential for guiding more precise, patient-specific treatment strategies while offering insights into immune-related mechanisms.</div></div>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":"631 ","pages":"Article 217930"},"PeriodicalIF":10.1000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multimodal radiopathomics signature for prediction of response to immunotherapy-based combination therapy in gastric cancer using interpretable machine learning\",\"authors\":\"Weicai Huang ,&nbsp;Xiaoyan Wang ,&nbsp;Rou Zhong ,&nbsp;Zhe Li ,&nbsp;Kangneng Zhou ,&nbsp;Qing Lyu ,&nbsp;James Edward Han ,&nbsp;Tao Chen ,&nbsp;Md Tauhidul Islam ,&nbsp;Qingyu Yuan ,&nbsp;M. Usman Ahmad ,&nbsp;Sitong Chen ,&nbsp;Chuanli Chen ,&nbsp;Jiongqiang Huang ,&nbsp;Jingjing Xie ,&nbsp;Yunhao Shen ,&nbsp;Wenjun Xiong ,&nbsp;Lin Shen ,&nbsp;Yikai Xu ,&nbsp;Fan Yang ,&nbsp;Yuming Jiang\",\"doi\":\"10.1016/j.canlet.2025.217930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Immunotherapy has become a cornerstone in the treatment of advanced gastric cancer (GC). However, identifying reliable predictive biomarkers remains a considerable challenge. This study demonstrates the potential of integrating multimodal baseline data, including computed tomography scan images and digital H&amp;E-stained pathology images, with biological interpretation to predict the response to immunotherapy-based combination therapy using a multicenter cohort of 298 GC patients. By employing seven machine learning approaches, we developed a radiopathomics signature (RPS) to predict treatment response and stratify prognostic risk in GC. The RPS demonstrated area under the receiver-operating-characteristic curves (AUCs) of 0.978 (95 % CI, 0.950–1.000), 0.863 (95 % CI, 0.744–0.982), and 0.822 (95 % CI, 0.668–0.975) in the training, internal validation, and external validation cohorts, respectively, outperforming conventional biomarkers such as CPS, MSI-H, EBV, and HER-2. Kaplan-Meier analysis revealed significant differences of survival between high- and low-risk groups, especially in advanced-stage and non-surgical patients. Additionally, genetic analyses revealed that the RPS correlates with enhanced immune regulation pathways and increased infiltration of memory B cells. The interpretable RPS provides accurate predictions for treatment response and prognosis in GC and holds potential for guiding more precise, patient-specific treatment strategies while offering insights into immune-related mechanisms.</div></div>\",\"PeriodicalId\":9506,\"journal\":{\"name\":\"Cancer letters\",\"volume\":\"631 \",\"pages\":\"Article 217930\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer letters\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304383525004999\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304383525004999","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

免疫治疗已成为晚期胃癌(GC)治疗的基石。然而,确定可靠的预测性生物标志物仍然是一个相当大的挑战。该研究展示了整合多模式基线数据的潜力,包括计算机断层扫描图像和数字H&; e染色病理图像,以及生物学解释,以预测对基于免疫治疗的联合治疗的反应,该研究使用了298名GC患者的多中心队列。通过采用七种机器学习方法,我们开发了放射病理学特征(RPS)来预测GC的治疗反应和预后风险分层。在训练、内部验证和外部验证组中,RPS显示的受试者工作特征曲线(auc)下面积分别为0.978 (95% CI, 0.950-1.000)、0.863 (95% CI, 0.744-0.982)和0.822 (95% CI, 0.668-0.975),优于传统的生物标志物,如CPS、MSI-H、EBV和HER-2。Kaplan-Meier分析显示,高危组和低危组的生存率存在显著差异,尤其是在晚期和非手术患者中。此外,遗传分析显示RPS与增强的免疫调节途径和增加的记忆B细胞浸润相关。可解释的RPS为GC的治疗反应和预后提供了准确的预测,并有可能指导更精确的患者特异性治疗策略,同时为免疫相关机制提供见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multimodal radiopathomics signature for prediction of response to immunotherapy-based combination therapy in gastric cancer using interpretable machine learning
Immunotherapy has become a cornerstone in the treatment of advanced gastric cancer (GC). However, identifying reliable predictive biomarkers remains a considerable challenge. This study demonstrates the potential of integrating multimodal baseline data, including computed tomography scan images and digital H&E-stained pathology images, with biological interpretation to predict the response to immunotherapy-based combination therapy using a multicenter cohort of 298 GC patients. By employing seven machine learning approaches, we developed a radiopathomics signature (RPS) to predict treatment response and stratify prognostic risk in GC. The RPS demonstrated area under the receiver-operating-characteristic curves (AUCs) of 0.978 (95 % CI, 0.950–1.000), 0.863 (95 % CI, 0.744–0.982), and 0.822 (95 % CI, 0.668–0.975) in the training, internal validation, and external validation cohorts, respectively, outperforming conventional biomarkers such as CPS, MSI-H, EBV, and HER-2. Kaplan-Meier analysis revealed significant differences of survival between high- and low-risk groups, especially in advanced-stage and non-surgical patients. Additionally, genetic analyses revealed that the RPS correlates with enhanced immune regulation pathways and increased infiltration of memory B cells. The interpretable RPS provides accurate predictions for treatment response and prognosis in GC and holds potential for guiding more precise, patient-specific treatment strategies while offering insights into immune-related mechanisms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cancer letters
Cancer letters 医学-肿瘤学
CiteScore
17.70
自引率
2.10%
发文量
427
审稿时长
15 days
期刊介绍: Cancer Letters is a reputable international journal that serves as a platform for significant and original contributions in cancer research. The journal welcomes both full-length articles and Mini Reviews in the wide-ranging field of basic and translational oncology. Furthermore, it frequently presents Special Issues that shed light on current and topical areas in cancer research. Cancer Letters is highly interested in various fundamental aspects that can cater to a diverse readership. These areas include the molecular genetics and cell biology of cancer, radiation biology, molecular pathology, hormones and cancer, viral oncology, metastasis, and chemoprevention. The journal actively focuses on experimental therapeutics, particularly the advancement of targeted therapies for personalized cancer medicine, such as metronomic chemotherapy. By publishing groundbreaking research and promoting advancements in cancer treatments, Cancer Letters aims to actively contribute to the fight against cancer and the improvement of patient outcomes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信