矩阵二阶系统的鲁棒切换控制设计:在机器人手杖平台上的应用

Q3 Mathematics
Ivan Yupanqui, Macarena Vilca, Renzo Mendoza, Alain Chupa, Diego Arce, Jesús Alan Calderón, Bryan Bastidas, Miguel Badillo
{"title":"矩阵二阶系统的鲁棒切换控制设计:在机器人手杖平台上的应用","authors":"Ivan Yupanqui,&nbsp;Macarena Vilca,&nbsp;Renzo Mendoza,&nbsp;Alain Chupa,&nbsp;Diego Arce,&nbsp;Jesús Alan Calderón,&nbsp;Bryan Bastidas,&nbsp;Miguel Badillo","doi":"10.1016/j.rico.2025.100597","DOIUrl":null,"url":null,"abstract":"<div><div>This paper addresses the switching control design problem for a class of nonlinear matrix second-order systems that characterize the dynamics of robotic and multibody systems. These systems are inherently characterized by significant nonlinearities and are subject to uncertainties, parameter variations, and external disturbances, which pose substantial challenges for control design. Analytical solutions for such control problems are often intractable, necessitating the use of numerical optimization techniques. This study presents sufficient conditions, derived from Lyapunov stability theory, for synthesizing switching feedback controllers that ensure system stability with guaranteed <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> performance. The approach leverages the Linear Parameter Varying (LPV) representation of the nonlinear dynamics through Takagi–Sugeno (T-S) modeling methodology. The proposed stability conditions are formulated as Linear Matrix Inequalities (LMIs), enabling efficient computation using standard convex optimization software. Comprehensive simulation studies demonstrate that the proposed switching control strategy, applicable to a broad class of nonlinear matrix second-order systems, significantly outperforms conventional weighted gain-scheduling approaches in terms of feasibility regions and <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> performance indices. Experimental validation on a robotic cane platform confirms the practical effectiveness of the proposed methodology, achieving nice dynamic performance and robust disturbance rejection capabilities.</div></div>","PeriodicalId":34733,"journal":{"name":"Results in Control and Optimization","volume":"20 ","pages":"Article 100597"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust switching control design for matrix second order systems: Application to robotic cane platform\",\"authors\":\"Ivan Yupanqui,&nbsp;Macarena Vilca,&nbsp;Renzo Mendoza,&nbsp;Alain Chupa,&nbsp;Diego Arce,&nbsp;Jesús Alan Calderón,&nbsp;Bryan Bastidas,&nbsp;Miguel Badillo\",\"doi\":\"10.1016/j.rico.2025.100597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper addresses the switching control design problem for a class of nonlinear matrix second-order systems that characterize the dynamics of robotic and multibody systems. These systems are inherently characterized by significant nonlinearities and are subject to uncertainties, parameter variations, and external disturbances, which pose substantial challenges for control design. Analytical solutions for such control problems are often intractable, necessitating the use of numerical optimization techniques. This study presents sufficient conditions, derived from Lyapunov stability theory, for synthesizing switching feedback controllers that ensure system stability with guaranteed <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> performance. The approach leverages the Linear Parameter Varying (LPV) representation of the nonlinear dynamics through Takagi–Sugeno (T-S) modeling methodology. The proposed stability conditions are formulated as Linear Matrix Inequalities (LMIs), enabling efficient computation using standard convex optimization software. Comprehensive simulation studies demonstrate that the proposed switching control strategy, applicable to a broad class of nonlinear matrix second-order systems, significantly outperforms conventional weighted gain-scheduling approaches in terms of feasibility regions and <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> performance indices. Experimental validation on a robotic cane platform confirms the practical effectiveness of the proposed methodology, achieving nice dynamic performance and robust disturbance rejection capabilities.</div></div>\",\"PeriodicalId\":34733,\"journal\":{\"name\":\"Results in Control and Optimization\",\"volume\":\"20 \",\"pages\":\"Article 100597\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Control and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666720725000839\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666720725000839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

研究了一类具有机器人和多体系统动力学特征的非线性矩阵二阶系统的切换控制设计问题。这些系统本质上具有显著的非线性特征,并受到不确定性、参数变化和外部干扰的影响,这对控制设计构成了重大挑战。这类控制问题的解析解通常是棘手的,需要使用数值优化技术。本文从Lyapunov稳定性理论出发,给出了合成切换反馈控制器的充分条件,保证了系统稳定性和H∞性能。该方法通过Takagi-Sugeno (T-S)建模方法利用非线性动力学的线性参数变化(LPV)表示。提出的稳定性条件被表述为线性矩阵不等式(lmi),使得使用标准凸优化软件进行高效计算。综合仿真研究表明,所提出的切换控制策略适用于广泛的非线性矩阵二阶系统,在可行性区域和H∞性能指标方面明显优于传统的加权增益调度方法。在机器人手杖平台上的实验验证验证了该方法的实用性,取得了良好的动态性能和鲁棒抗干扰能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust switching control design for matrix second order systems: Application to robotic cane platform
This paper addresses the switching control design problem for a class of nonlinear matrix second-order systems that characterize the dynamics of robotic and multibody systems. These systems are inherently characterized by significant nonlinearities and are subject to uncertainties, parameter variations, and external disturbances, which pose substantial challenges for control design. Analytical solutions for such control problems are often intractable, necessitating the use of numerical optimization techniques. This study presents sufficient conditions, derived from Lyapunov stability theory, for synthesizing switching feedback controllers that ensure system stability with guaranteed H performance. The approach leverages the Linear Parameter Varying (LPV) representation of the nonlinear dynamics through Takagi–Sugeno (T-S) modeling methodology. The proposed stability conditions are formulated as Linear Matrix Inequalities (LMIs), enabling efficient computation using standard convex optimization software. Comprehensive simulation studies demonstrate that the proposed switching control strategy, applicable to a broad class of nonlinear matrix second-order systems, significantly outperforms conventional weighted gain-scheduling approaches in terms of feasibility regions and H performance indices. Experimental validation on a robotic cane platform confirms the practical effectiveness of the proposed methodology, achieving nice dynamic performance and robust disturbance rejection capabilities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Control and Optimization
Results in Control and Optimization Mathematics-Control and Optimization
CiteScore
3.00
自引率
0.00%
发文量
51
审稿时长
91 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信