基于贝叶斯向量自回归预测模型的进化动态多目标优化

IF 8 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Kai Gao , Wenxiang Jiang , Lihong Xu
{"title":"基于贝叶斯向量自回归预测模型的进化动态多目标优化","authors":"Kai Gao ,&nbsp;Wenxiang Jiang ,&nbsp;Lihong Xu","doi":"10.1016/j.engappai.2025.111696","DOIUrl":null,"url":null,"abstract":"<div><div>Dynamic multiobjective optimization problems (DMOPs), inherently involving the simultaneous optimization of conflicting objectives under time-varying environments, exhibit ubiquitous presence in real-world applications spanning diverse engineering disciplines. A prevalent limitation in existing dynamic multiobjective optimization evolutionary algorithms (DMOEAs) lies in inadequate utilization of historical information and neglect of interdependencies among decision variables, which frequently induces suboptimal initial population predictions deviating from true Pareto optimal sets. To mitigate these limitations, we propose MOEA/D-BVAR, a novel DMOEA framework incorporating a Bayesian vector autoregressive (BVAR) model that conceptualizes solution dynamics through holistic vector forecasting rather than isolated variable-specific prediction. The algorithm initially clusters variables via mutual information correlation analysis, subsequently constructing BVAR models for each cluster to project their evolutionary trajectories. Independently varying variables are rapidly predicted through differential forecasting models. A multivariate interaction optimization mechanism enhances search efficiency. Comprehensive empirical evaluations on 14 benchmark suites compare MOEA/D-BVAR against six state-of-the-art DMOEAs developed over the past five years. Statistical analysis of experimental outcomes demonstrates the proposed algorithm’s superior competitiveness in handling complex DMOPs.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"159 ","pages":"Article 111696"},"PeriodicalIF":8.0000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolutionary dynamic multiobjective optimization using a Bayesian vector autoregression prediction model\",\"authors\":\"Kai Gao ,&nbsp;Wenxiang Jiang ,&nbsp;Lihong Xu\",\"doi\":\"10.1016/j.engappai.2025.111696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Dynamic multiobjective optimization problems (DMOPs), inherently involving the simultaneous optimization of conflicting objectives under time-varying environments, exhibit ubiquitous presence in real-world applications spanning diverse engineering disciplines. A prevalent limitation in existing dynamic multiobjective optimization evolutionary algorithms (DMOEAs) lies in inadequate utilization of historical information and neglect of interdependencies among decision variables, which frequently induces suboptimal initial population predictions deviating from true Pareto optimal sets. To mitigate these limitations, we propose MOEA/D-BVAR, a novel DMOEA framework incorporating a Bayesian vector autoregressive (BVAR) model that conceptualizes solution dynamics through holistic vector forecasting rather than isolated variable-specific prediction. The algorithm initially clusters variables via mutual information correlation analysis, subsequently constructing BVAR models for each cluster to project their evolutionary trajectories. Independently varying variables are rapidly predicted through differential forecasting models. A multivariate interaction optimization mechanism enhances search efficiency. Comprehensive empirical evaluations on 14 benchmark suites compare MOEA/D-BVAR against six state-of-the-art DMOEAs developed over the past five years. Statistical analysis of experimental outcomes demonstrates the proposed algorithm’s superior competitiveness in handling complex DMOPs.</div></div>\",\"PeriodicalId\":50523,\"journal\":{\"name\":\"Engineering Applications of Artificial Intelligence\",\"volume\":\"159 \",\"pages\":\"Article 111696\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Applications of Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0952197625016987\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197625016987","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

动态多目标优化问题(dops)本质上涉及时变环境下冲突目标的同时优化,在跨越不同工程学科的实际应用中无处不在。现有动态多目标优化进化算法(dmoea)存在一个普遍的局限性,即对历史信息的利用不足,忽视决策变量之间的相互依赖关系,这往往会导致偏离真正帕累托最优集的次优初始种群预测。为了减轻这些限制,我们提出了MOEA/D-BVAR,这是一个新的DMOEA框架,结合了贝叶斯向量自回归(BVAR)模型,通过整体向量预测而不是孤立的变量特定预测来概念化解动力学。该算法首先通过互信息相关分析对变量进行聚类,然后为每个聚类构建BVAR模型来预测它们的进化轨迹。通过微分预测模型可以快速预测独立变量。多元交互优化机制提高了搜索效率。对14个基准套件的综合实证评估将MOEA/D-BVAR与过去5年开发的6个最先进的dmoea进行了比较。实验结果的统计分析表明,该算法在处理复杂dops方面具有较强的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolutionary dynamic multiobjective optimization using a Bayesian vector autoregression prediction model
Dynamic multiobjective optimization problems (DMOPs), inherently involving the simultaneous optimization of conflicting objectives under time-varying environments, exhibit ubiquitous presence in real-world applications spanning diverse engineering disciplines. A prevalent limitation in existing dynamic multiobjective optimization evolutionary algorithms (DMOEAs) lies in inadequate utilization of historical information and neglect of interdependencies among decision variables, which frequently induces suboptimal initial population predictions deviating from true Pareto optimal sets. To mitigate these limitations, we propose MOEA/D-BVAR, a novel DMOEA framework incorporating a Bayesian vector autoregressive (BVAR) model that conceptualizes solution dynamics through holistic vector forecasting rather than isolated variable-specific prediction. The algorithm initially clusters variables via mutual information correlation analysis, subsequently constructing BVAR models for each cluster to project their evolutionary trajectories. Independently varying variables are rapidly predicted through differential forecasting models. A multivariate interaction optimization mechanism enhances search efficiency. Comprehensive empirical evaluations on 14 benchmark suites compare MOEA/D-BVAR against six state-of-the-art DMOEAs developed over the past five years. Statistical analysis of experimental outcomes demonstrates the proposed algorithm’s superior competitiveness in handling complex DMOPs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Applications of Artificial Intelligence
Engineering Applications of Artificial Intelligence 工程技术-工程:电子与电气
CiteScore
9.60
自引率
10.00%
发文量
505
审稿时长
68 days
期刊介绍: Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信