双雷达视觉:物联网雷达网络中高级目标检测的特征融合方法

IF 4.9
Philipp Reitz, Tobias Veihelmann, Norman Franchi, Maximilian Lübke
{"title":"双雷达视觉:物联网雷达网络中高级目标检测的特征融合方法","authors":"Philipp Reitz,&nbsp;Tobias Veihelmann,&nbsp;Norman Franchi,&nbsp;Maximilian Lübke","doi":"10.1016/j.mlwa.2025.100703","DOIUrl":null,"url":null,"abstract":"<div><div>60<!--> <!-->GHz radar technology is one of the most promising movement detector solutions for Internet of Things (IoT) applications. However, challenges remain in accurately classifying different objects and detecting small objects in a multi-target scenario. This work investigates whether sensor fusion between multiple radars can enhance object detection and classification performance. A one-stage detection architecture, designed based on the features of the latest YOLO generations, is used to perform fusion based on range-Doppler (RD) maps of two non-coherent spatially separated radars. A complete physical 3D propagation simulation using ray tracing evaluates the fusion methods. This approach enables precise ground truth, as all unprocessed signal components are known, and guarantees a consistent, error-free reference. Results demonstrate that dynamic, attention-based fusion significantly improves detection and classification compared to static fusion in homogeneous and heterogeneous radar setups.</div></div>","PeriodicalId":74093,"journal":{"name":"Machine learning with applications","volume":"21 ","pages":"Article 100703"},"PeriodicalIF":4.9000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual radar vision: A feature fusion approach for advanced object detection in IoT radar networks\",\"authors\":\"Philipp Reitz,&nbsp;Tobias Veihelmann,&nbsp;Norman Franchi,&nbsp;Maximilian Lübke\",\"doi\":\"10.1016/j.mlwa.2025.100703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>60<!--> <!-->GHz radar technology is one of the most promising movement detector solutions for Internet of Things (IoT) applications. However, challenges remain in accurately classifying different objects and detecting small objects in a multi-target scenario. This work investigates whether sensor fusion between multiple radars can enhance object detection and classification performance. A one-stage detection architecture, designed based on the features of the latest YOLO generations, is used to perform fusion based on range-Doppler (RD) maps of two non-coherent spatially separated radars. A complete physical 3D propagation simulation using ray tracing evaluates the fusion methods. This approach enables precise ground truth, as all unprocessed signal components are known, and guarantees a consistent, error-free reference. Results demonstrate that dynamic, attention-based fusion significantly improves detection and classification compared to static fusion in homogeneous and heterogeneous radar setups.</div></div>\",\"PeriodicalId\":74093,\"journal\":{\"name\":\"Machine learning with applications\",\"volume\":\"21 \",\"pages\":\"Article 100703\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine learning with applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666827025000866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning with applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666827025000866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

60 GHz雷达技术是物联网(IoT)应用中最有前途的运动探测器解决方案之一。然而,在多目标场景下,如何准确分类不同的目标和检测小目标仍然是一个挑战。本文研究了多雷达之间的传感器融合是否能够提高目标检测和分类性能。基于最新一代YOLO雷达的特点,设计了一种单级探测架构,用于对两个非相干空间分离雷达的距离-多普勒(RD)图进行融合。一个完整的物理三维传播模拟使用光线追踪评估融合方法。由于所有未处理的信号成分都是已知的,因此这种方法可以实现精确的接地真值,并保证一致,无错误的参考。结果表明,在均匀和非均匀雷达设置中,与静态融合相比,动态、基于注意力的融合显著提高了检测和分类能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dual radar vision: A feature fusion approach for advanced object detection in IoT radar networks
60 GHz radar technology is one of the most promising movement detector solutions for Internet of Things (IoT) applications. However, challenges remain in accurately classifying different objects and detecting small objects in a multi-target scenario. This work investigates whether sensor fusion between multiple radars can enhance object detection and classification performance. A one-stage detection architecture, designed based on the features of the latest YOLO generations, is used to perform fusion based on range-Doppler (RD) maps of two non-coherent spatially separated radars. A complete physical 3D propagation simulation using ray tracing evaluates the fusion methods. This approach enables precise ground truth, as all unprocessed signal components are known, and guarantees a consistent, error-free reference. Results demonstrate that dynamic, attention-based fusion significantly improves detection and classification compared to static fusion in homogeneous and heterogeneous radar setups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Machine learning with applications
Machine learning with applications Management Science and Operations Research, Artificial Intelligence, Computer Science Applications
自引率
0.00%
发文量
0
审稿时长
98 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信