用于精确估算矿物成分和煤灰含量的强监督高光谱分解框架

IF 8 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Yao Cui , Ziqi Lv , Ying Gao , Yuxin Wu , Xuan Zhao , Qingxuan Meng , Jun Dong , Zhiqiang Xu , Weidong Wang
{"title":"用于精确估算矿物成分和煤灰含量的强监督高光谱分解框架","authors":"Yao Cui ,&nbsp;Ziqi Lv ,&nbsp;Ying Gao ,&nbsp;Yuxin Wu ,&nbsp;Xuan Zhao ,&nbsp;Qingxuan Meng ,&nbsp;Jun Dong ,&nbsp;Zhiqiang Xu ,&nbsp;Weidong Wang","doi":"10.1016/j.engappai.2025.111784","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate coal ash content detection is essential for advancing intelligent clean coal processing and holds significant practical value across mining, washing, combustion, and conversion technologies. This paper introduces a strongly supervised hyperspectral unmixing (SSHU) framework designed to estimate mineral composition proportions and ash content. We conducted systematic ablation experiments on concentrated coal and tailings coal datasets to evaluate the method's effectiveness and analyze the mechanisms of proportional prior information and reconstruction decoders. Results demonstrate that proportional prior information effectively constrains the proportional encoder, making estimated mineral and pure coal distributions closer to actual material distributions. The reconstruction decoder enhances the proportional encoder's feature extraction ability, guides model convergence, and improves both proportion and ash content estimation accuracy. Compared to existing hyperspectral unmixing methods, our approach incorporates pure substance spectral information during model training and combines proportional prior constraints. This provides a robust solution for complex mixture analysis and demonstrates significant potential in hyperspectral unmixing applications.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"159 ","pages":"Article 111784"},"PeriodicalIF":8.0000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A strongly supervised hyperspectral unmixing framework for precise mineral composition and coal ash content estimation\",\"authors\":\"Yao Cui ,&nbsp;Ziqi Lv ,&nbsp;Ying Gao ,&nbsp;Yuxin Wu ,&nbsp;Xuan Zhao ,&nbsp;Qingxuan Meng ,&nbsp;Jun Dong ,&nbsp;Zhiqiang Xu ,&nbsp;Weidong Wang\",\"doi\":\"10.1016/j.engappai.2025.111784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate coal ash content detection is essential for advancing intelligent clean coal processing and holds significant practical value across mining, washing, combustion, and conversion technologies. This paper introduces a strongly supervised hyperspectral unmixing (SSHU) framework designed to estimate mineral composition proportions and ash content. We conducted systematic ablation experiments on concentrated coal and tailings coal datasets to evaluate the method's effectiveness and analyze the mechanisms of proportional prior information and reconstruction decoders. Results demonstrate that proportional prior information effectively constrains the proportional encoder, making estimated mineral and pure coal distributions closer to actual material distributions. The reconstruction decoder enhances the proportional encoder's feature extraction ability, guides model convergence, and improves both proportion and ash content estimation accuracy. Compared to existing hyperspectral unmixing methods, our approach incorporates pure substance spectral information during model training and combines proportional prior constraints. This provides a robust solution for complex mixture analysis and demonstrates significant potential in hyperspectral unmixing applications.</div></div>\",\"PeriodicalId\":50523,\"journal\":{\"name\":\"Engineering Applications of Artificial Intelligence\",\"volume\":\"159 \",\"pages\":\"Article 111784\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Applications of Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0952197625017865\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197625017865","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

准确的煤灰分检测对于推进智能洁净煤加工至关重要,在采矿、洗选、燃烧和转化技术中具有重要的实用价值。本文介绍了一种用于估算矿物成分比例和灰分含量的强监督高光谱分解(SSHU)框架。通过对浓煤和尾矿煤数据集的系统烧蚀实验,验证了该方法的有效性,并分析了比例先验信息和重构解码器的机制。结果表明,比例先验信息有效地约束了比例编码器,使估计的矿物和纯煤分布更接近实际的物质分布。重构解码器增强了比例编码器的特征提取能力,引导模型收敛,提高了比例和灰分估计精度。与现有的高光谱解混方法相比,该方法在模型训练过程中融合了纯物质光谱信息,并结合了比例先验约束。这为复杂的混合物分析提供了一个强大的解决方案,并在高光谱分解应用中展示了巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A strongly supervised hyperspectral unmixing framework for precise mineral composition and coal ash content estimation
Accurate coal ash content detection is essential for advancing intelligent clean coal processing and holds significant practical value across mining, washing, combustion, and conversion technologies. This paper introduces a strongly supervised hyperspectral unmixing (SSHU) framework designed to estimate mineral composition proportions and ash content. We conducted systematic ablation experiments on concentrated coal and tailings coal datasets to evaluate the method's effectiveness and analyze the mechanisms of proportional prior information and reconstruction decoders. Results demonstrate that proportional prior information effectively constrains the proportional encoder, making estimated mineral and pure coal distributions closer to actual material distributions. The reconstruction decoder enhances the proportional encoder's feature extraction ability, guides model convergence, and improves both proportion and ash content estimation accuracy. Compared to existing hyperspectral unmixing methods, our approach incorporates pure substance spectral information during model training and combines proportional prior constraints. This provides a robust solution for complex mixture analysis and demonstrates significant potential in hyperspectral unmixing applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Applications of Artificial Intelligence
Engineering Applications of Artificial Intelligence 工程技术-工程:电子与电气
CiteScore
9.60
自引率
10.00%
发文量
505
审稿时长
68 days
期刊介绍: Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信