STHD:全转录组空间数据中单个点的高清晰度概率细胞分型

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Chuhanwen Sun, Yi Zhang
{"title":"STHD:全转录组空间数据中单个点的高清晰度概率细胞分型","authors":"Chuhanwen Sun, Yi Zhang","doi":"10.1186/s13059-025-03608-4","DOIUrl":null,"url":null,"abstract":"Recent advances in spatial transcriptomics technologies have enabled gene expression profiling across the transcriptome in spots with subcellular resolution, but high sparsity and dimensionality present significant computational challenges. We present STHD for probabilistic cell typing of single spots in whole-transcriptome spatial transcriptomics with high definition. With a machine learning model combining count statistics with neighbor regularization, STHD accurately predicts cell type identities of subcellular spots, revealing both global tissue architecture and local multicellular neighborhoods. We demonstrate STHD in spatial analyses of cell type-specific gene expression and immune interaction hubs in tumor microenvironment, and its generalizability across samples, tissues, and diseases.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"2 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"STHD: probabilistic cell typing of single spots in whole transcriptome spatial data with high definition\",\"authors\":\"Chuhanwen Sun, Yi Zhang\",\"doi\":\"10.1186/s13059-025-03608-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advances in spatial transcriptomics technologies have enabled gene expression profiling across the transcriptome in spots with subcellular resolution, but high sparsity and dimensionality present significant computational challenges. We present STHD for probabilistic cell typing of single spots in whole-transcriptome spatial transcriptomics with high definition. With a machine learning model combining count statistics with neighbor regularization, STHD accurately predicts cell type identities of subcellular spots, revealing both global tissue architecture and local multicellular neighborhoods. We demonstrate STHD in spatial analyses of cell type-specific gene expression and immune interaction hubs in tumor microenvironment, and its generalizability across samples, tissues, and diseases.\",\"PeriodicalId\":12611,\"journal\":{\"name\":\"Genome Biology\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-025-03608-4\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03608-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

空间转录组学技术的最新进展使亚细胞分辨率的转录组基因表达谱成为可能,但高稀疏性和高维度带来了重大的计算挑战。我们提出了高清晰度的全转录组空间转录组中单个点的概率细胞分型的STHD。通过结合计数统计和邻居正则化的机器学习模型,STHD准确预测亚细胞斑点的细胞类型身份,揭示全局组织结构和局部多细胞邻居。我们通过对肿瘤微环境中细胞类型特异性基因表达和免疫相互作用中心的空间分析,以及其在样本、组织和疾病中的普遍性,证明了STHD。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
STHD: probabilistic cell typing of single spots in whole transcriptome spatial data with high definition
Recent advances in spatial transcriptomics technologies have enabled gene expression profiling across the transcriptome in spots with subcellular resolution, but high sparsity and dimensionality present significant computational challenges. We present STHD for probabilistic cell typing of single spots in whole-transcriptome spatial transcriptomics with high definition. With a machine learning model combining count statistics with neighbor regularization, STHD accurately predicts cell type identities of subcellular spots, revealing both global tissue architecture and local multicellular neighborhoods. We demonstrate STHD in spatial analyses of cell type-specific gene expression and immune interaction hubs in tumor microenvironment, and its generalizability across samples, tissues, and diseases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genome Biology
Genome Biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍: Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens. With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category. Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信