海洋重氮养鳄watsonii WH 8501代谢过程的时间调控

Julia M Gauglitz, Keisuke Inomura, Wout Bittremieux, Dawn M Moran, Matthew R McIlvin, Mak A Saito
{"title":"海洋重氮养鳄watsonii WH 8501代谢过程的时间调控","authors":"Julia M Gauglitz, Keisuke Inomura, Wout Bittremieux, Dawn M Moran, Matthew R McIlvin, Mak A Saito","doi":"10.1101/2025.07.11.664471","DOIUrl":null,"url":null,"abstract":"<p><p>Marine diazotrophic cyanobacteria play a crucial role in oceanic nitrogen cycling, supporting primary production and ecosystem balance. <i>Crocosphaera watsonii</i> WH8501 exemplifies this ability by temporally separating photosynthesis and diazotrophy to sustain metabolism. To investigate the regulatory mechanisms underlying this process, we employed LC/MS-MS proteomics in a diel culturing experiment, revealing tightly coordinated protein abundance patterns. Our findings showed a sophisticated temporal regulation of metabolic processes categorized within six distinct protein abundance clusters: (1) nitrogen fixation and amino acid biosynthesis proteins peaked during the night, while (2) glycogen metabolism and dark reactions of photosynthesis were most abundant during the night and day-night transition, likely supporting carbon consumption and energy production. Midday (3 and 4) was dominated by proteins related to photosynthesis, cellular division, and lipid synthesis, whereas late-day peaks (5) in peptide biosynthesis may facilitate nitrogenase complex formation. Notably, the day-night transition (6) exhibited fine-tuned coordination of nitrogenase assembly, with FeS cluster proteins preceding peak nitrogenase iron protein abundance, implying a temporally ordered sequence for functional enzyme formation. Within these categories, sharp temporal patterns emerged in iron trafficking to heme and iron cluster biosynthetic systems, consistent with the need to maintain tight control of iron distribution to metalloproteins at each temporal transition. These results highlight the intricate diel regulation that enables <i>Crocosphaera</i> to balance nitrogen fixation and photosynthesis within a single cell. The observed coordination supports the existence of a complex regulatory system ensuring optimal metabolic performance, reinforcing the critical role of temporal control in sustaining these globally significant biological processes.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12265555/pdf/","citationCount":"0","resultStr":"{\"title\":\"Temporal regulation of metabolic processes in the marine diazotroph <i>Crocosphaera watsonii</i> WH 8501.\",\"authors\":\"Julia M Gauglitz, Keisuke Inomura, Wout Bittremieux, Dawn M Moran, Matthew R McIlvin, Mak A Saito\",\"doi\":\"10.1101/2025.07.11.664471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Marine diazotrophic cyanobacteria play a crucial role in oceanic nitrogen cycling, supporting primary production and ecosystem balance. <i>Crocosphaera watsonii</i> WH8501 exemplifies this ability by temporally separating photosynthesis and diazotrophy to sustain metabolism. To investigate the regulatory mechanisms underlying this process, we employed LC/MS-MS proteomics in a diel culturing experiment, revealing tightly coordinated protein abundance patterns. Our findings showed a sophisticated temporal regulation of metabolic processes categorized within six distinct protein abundance clusters: (1) nitrogen fixation and amino acid biosynthesis proteins peaked during the night, while (2) glycogen metabolism and dark reactions of photosynthesis were most abundant during the night and day-night transition, likely supporting carbon consumption and energy production. Midday (3 and 4) was dominated by proteins related to photosynthesis, cellular division, and lipid synthesis, whereas late-day peaks (5) in peptide biosynthesis may facilitate nitrogenase complex formation. Notably, the day-night transition (6) exhibited fine-tuned coordination of nitrogenase assembly, with FeS cluster proteins preceding peak nitrogenase iron protein abundance, implying a temporally ordered sequence for functional enzyme formation. Within these categories, sharp temporal patterns emerged in iron trafficking to heme and iron cluster biosynthetic systems, consistent with the need to maintain tight control of iron distribution to metalloproteins at each temporal transition. These results highlight the intricate diel regulation that enables <i>Crocosphaera</i> to balance nitrogen fixation and photosynthesis within a single cell. The observed coordination supports the existence of a complex regulatory system ensuring optimal metabolic performance, reinforcing the critical role of temporal control in sustaining these globally significant biological processes.</p>\",\"PeriodicalId\":519960,\"journal\":{\"name\":\"bioRxiv : the preprint server for biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12265555/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv : the preprint server for biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2025.07.11.664471\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.07.11.664471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

海洋重氮营养蓝藻在海洋氮循环中起着至关重要的作用,支持初级生产和生态系统平衡。watsonii鳄鱼WH8501通过暂时分离光合作用和重氮营养来维持新陈代谢,体现了这种能力。为了研究这一过程的调控机制,我们在培养液实验中采用LC/MS-MS蛋白质组学,揭示了紧密协调的蛋白质丰度模式。我们的研究结果表明,代谢过程具有复杂的时间调控,可分为六个不同的蛋白质丰度簇:(1)固氮和氨基酸生物合成蛋白在夜间达到峰值,而(2)糖原代谢和光合作用的暗反应在夜间和昼夜转换期间最为丰富,可能支持碳消耗和能量产生。中午(3和4)主要是与光合作用、细胞分裂和脂质合成相关的蛋白质,而肽生物合成的晚高峰(5)可能促进氮酶复合物的形成。值得注意的是,昼夜转换(6)显示了氮酶组装的精细协调,FeS簇蛋白在氮酶铁蛋白丰度峰值之前,这意味着功能性酶形成的时间顺序是有序的。在这些类别中,铁转运到血红素和铁簇生物合成系统中出现了明显的时间模式,这与在每个时间过渡中保持铁分配到金属蛋白的严格控制的需要是一致的。这些结果突出了鳄鱼在单个细胞内平衡固氮和光合作用的复杂的diel调节。观察到的协调支持了复杂调节系统的存在,确保了最佳的代谢表现,加强了时间控制在维持这些全球重要生物过程中的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Temporal regulation of metabolic processes in the marine diazotroph Crocosphaera watsonii WH 8501.

Marine diazotrophic cyanobacteria play a crucial role in oceanic nitrogen cycling, supporting primary production and ecosystem balance. Crocosphaera watsonii WH8501 exemplifies this ability by temporally separating photosynthesis and diazotrophy to sustain metabolism. To investigate the regulatory mechanisms underlying this process, we employed LC/MS-MS proteomics in a diel culturing experiment, revealing tightly coordinated protein abundance patterns. Our findings showed a sophisticated temporal regulation of metabolic processes categorized within six distinct protein abundance clusters: (1) nitrogen fixation and amino acid biosynthesis proteins peaked during the night, while (2) glycogen metabolism and dark reactions of photosynthesis were most abundant during the night and day-night transition, likely supporting carbon consumption and energy production. Midday (3 and 4) was dominated by proteins related to photosynthesis, cellular division, and lipid synthesis, whereas late-day peaks (5) in peptide biosynthesis may facilitate nitrogenase complex formation. Notably, the day-night transition (6) exhibited fine-tuned coordination of nitrogenase assembly, with FeS cluster proteins preceding peak nitrogenase iron protein abundance, implying a temporally ordered sequence for functional enzyme formation. Within these categories, sharp temporal patterns emerged in iron trafficking to heme and iron cluster biosynthetic systems, consistent with the need to maintain tight control of iron distribution to metalloproteins at each temporal transition. These results highlight the intricate diel regulation that enables Crocosphaera to balance nitrogen fixation and photosynthesis within a single cell. The observed coordination supports the existence of a complex regulatory system ensuring optimal metabolic performance, reinforcing the critical role of temporal control in sustaining these globally significant biological processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信