Qianggang Ding, Zhichao Shen, Weiqiang Zhu, Bang Liu
{"title":"DASFormer:用于地震监测的自监督预训练。","authors":"Qianggang Ding, Zhichao Shen, Weiqiang Zhu, Bang Liu","doi":"10.1007/s44267-025-00085-y","DOIUrl":null,"url":null,"abstract":"<p><p>Earthquake monitoring is a fundamental task to unravel the underlying physics of earthquakes and mitigate associated hazards for public safety. Distributed acoustic sensing, or DAS, which transforms pre-existing telecommunication cables into ultra-dense seismic networks, offers a cost-effective and scalable solution for next-generation earthquake monitoring. However, current approaches for earthquake monitoring like PhaseNet and PhaseNet-2 primarily rely on supervised learning, while manually labeled DAS data is quite limited and it is difficult to obtain more annotated datasets. In this paper, we present DASFormer, a novel self-supervised pretraining technique on DAS data with a coarse-to-fine framework that models spatial-temporal signal correlation. We treat earthquake monitoring as an anomaly detection task and demonstrate DASFormer can be directly utilized as a seismic phase detector. Experimental results demonstrate that DASFormer is effective in terms of several evaluation metrics and outperforms state-of-the-art time-series forecasting, anomaly detection, and foundation models on the unsupervised seismic detection task. We also demonstrate the potential of fine-tuning DASFormer to downstream tasks through case studies.</p>","PeriodicalId":520376,"journal":{"name":"Visual intelligence","volume":"3 1","pages":"14"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12259731/pdf/","citationCount":"0","resultStr":"{\"title\":\"DASFormer: self-supervised pretraining for earthquake monitoring.\",\"authors\":\"Qianggang Ding, Zhichao Shen, Weiqiang Zhu, Bang Liu\",\"doi\":\"10.1007/s44267-025-00085-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Earthquake monitoring is a fundamental task to unravel the underlying physics of earthquakes and mitigate associated hazards for public safety. Distributed acoustic sensing, or DAS, which transforms pre-existing telecommunication cables into ultra-dense seismic networks, offers a cost-effective and scalable solution for next-generation earthquake monitoring. However, current approaches for earthquake monitoring like PhaseNet and PhaseNet-2 primarily rely on supervised learning, while manually labeled DAS data is quite limited and it is difficult to obtain more annotated datasets. In this paper, we present DASFormer, a novel self-supervised pretraining technique on DAS data with a coarse-to-fine framework that models spatial-temporal signal correlation. We treat earthquake monitoring as an anomaly detection task and demonstrate DASFormer can be directly utilized as a seismic phase detector. Experimental results demonstrate that DASFormer is effective in terms of several evaluation metrics and outperforms state-of-the-art time-series forecasting, anomaly detection, and foundation models on the unsupervised seismic detection task. We also demonstrate the potential of fine-tuning DASFormer to downstream tasks through case studies.</p>\",\"PeriodicalId\":520376,\"journal\":{\"name\":\"Visual intelligence\",\"volume\":\"3 1\",\"pages\":\"14\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12259731/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Visual intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s44267-025-00085-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44267-025-00085-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/15 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
DASFormer: self-supervised pretraining for earthquake monitoring.
Earthquake monitoring is a fundamental task to unravel the underlying physics of earthquakes and mitigate associated hazards for public safety. Distributed acoustic sensing, or DAS, which transforms pre-existing telecommunication cables into ultra-dense seismic networks, offers a cost-effective and scalable solution for next-generation earthquake monitoring. However, current approaches for earthquake monitoring like PhaseNet and PhaseNet-2 primarily rely on supervised learning, while manually labeled DAS data is quite limited and it is difficult to obtain more annotated datasets. In this paper, we present DASFormer, a novel self-supervised pretraining technique on DAS data with a coarse-to-fine framework that models spatial-temporal signal correlation. We treat earthquake monitoring as an anomaly detection task and demonstrate DASFormer can be directly utilized as a seismic phase detector. Experimental results demonstrate that DASFormer is effective in terms of several evaluation metrics and outperforms state-of-the-art time-series forecasting, anomaly detection, and foundation models on the unsupervised seismic detection task. We also demonstrate the potential of fine-tuning DASFormer to downstream tasks through case studies.