可扩展随机特征潜变量模型。

IF 18.6
Ying Li, Zhidi Lin, Yuhao Liu, Michael Minyi Zhang, Pablo M Olmos, Petar M Djuric
{"title":"可扩展随机特征潜变量模型。","authors":"Ying Li, Zhidi Lin, Yuhao Liu, Michael Minyi Zhang, Pablo M Olmos, Petar M Djuric","doi":"10.1109/TPAMI.2025.3589728","DOIUrl":null,"url":null,"abstract":"<p><p>Random feature latent variable models (RFLVMs) are state-of-the-art tools for uncovering structure in high-dimensional, non-Gaussian data. However, their reliance on Monte Carlo sampling significantly limits scalability, posing challenges for large-scale applications. To overcome these limitations, we develop a scalable RFLVM framework based on variational Bayesian inference (VBI), a deterministic and optimization-based alternative to sampling methods. Applying VBI to RFLVMs is nontrivial due to two key challenges: (i) the lack of an explicit probability density function (PDF) for Dirichlet process (DP) mixing weights, and (ii) the inefficiency of existing VBI approaches when handling the high-dimensional variational parameters of RFLVMs. To address these issues, we adopt the stick-breaking construction for the DP, which provides an explicit and tractable PDF over mixing weights, and propose a novel inference algorithm, block coordinate descent variational inference (BCD-VI), which partitions variational parameters into blocks and applies tailored solvers to optimize them efficiently. The resulting scalable model, referred to as SRFLVM, supports various likelihoods; we demonstrate its effectiveness under Gaussian and logistic settings. Extensive experiments on diverse benchmark datasets show that SRFLVM achieves superior scalability, computational efficiency, and performance in latent representation learning and missing data imputation, consistently outperforming state-of-the-art latent variable models, including deep generative approaches.</p>","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"PP ","pages":""},"PeriodicalIF":18.6000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scalable Random Feature Latent Variable Models.\",\"authors\":\"Ying Li, Zhidi Lin, Yuhao Liu, Michael Minyi Zhang, Pablo M Olmos, Petar M Djuric\",\"doi\":\"10.1109/TPAMI.2025.3589728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Random feature latent variable models (RFLVMs) are state-of-the-art tools for uncovering structure in high-dimensional, non-Gaussian data. However, their reliance on Monte Carlo sampling significantly limits scalability, posing challenges for large-scale applications. To overcome these limitations, we develop a scalable RFLVM framework based on variational Bayesian inference (VBI), a deterministic and optimization-based alternative to sampling methods. Applying VBI to RFLVMs is nontrivial due to two key challenges: (i) the lack of an explicit probability density function (PDF) for Dirichlet process (DP) mixing weights, and (ii) the inefficiency of existing VBI approaches when handling the high-dimensional variational parameters of RFLVMs. To address these issues, we adopt the stick-breaking construction for the DP, which provides an explicit and tractable PDF over mixing weights, and propose a novel inference algorithm, block coordinate descent variational inference (BCD-VI), which partitions variational parameters into blocks and applies tailored solvers to optimize them efficiently. The resulting scalable model, referred to as SRFLVM, supports various likelihoods; we demonstrate its effectiveness under Gaussian and logistic settings. Extensive experiments on diverse benchmark datasets show that SRFLVM achieves superior scalability, computational efficiency, and performance in latent representation learning and missing data imputation, consistently outperforming state-of-the-art latent variable models, including deep generative approaches.</p>\",\"PeriodicalId\":94034,\"journal\":{\"name\":\"IEEE transactions on pattern analysis and machine intelligence\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":18.6000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on pattern analysis and machine intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TPAMI.2025.3589728\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPAMI.2025.3589728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随机特征潜变量模型(rflvm)是揭示高维非高斯数据结构的最先进工具。然而,它们对蒙特卡罗采样的依赖极大地限制了可扩展性,给大规模应用带来了挑战。为了克服这些限制,我们开发了一个基于变分贝叶斯推理(VBI)的可扩展RFLVM框架,这是一种基于确定性和优化的采样方法替代方案。由于两个关键挑战,将VBI应用于rflvm是不容易的:(i)缺乏用于Dirichlet过程(DP)混合权重的显式概率密度函数(PDF); (ii)现有VBI方法在处理rflvm的高维变分参数时效率低下。为了解决这些问题,我们采用了一种基于混合权值的显式、可处理的变分推理算法,并提出了一种新的推理算法——块坐标下降变分推理(BCD-VI),该算法将变分参数划分为块,并使用定制的求解器对其进行有效优化。由此产生的可扩展模型,称为SRFLVM,支持各种可能性;我们证明了它在高斯和逻辑设置下的有效性。在不同基准数据集上的大量实验表明,SRFLVM在潜在表示学习和缺失数据输入方面具有优越的可扩展性、计算效率和性能,始终优于最先进的潜在变量模型,包括深度生成方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalable Random Feature Latent Variable Models.

Random feature latent variable models (RFLVMs) are state-of-the-art tools for uncovering structure in high-dimensional, non-Gaussian data. However, their reliance on Monte Carlo sampling significantly limits scalability, posing challenges for large-scale applications. To overcome these limitations, we develop a scalable RFLVM framework based on variational Bayesian inference (VBI), a deterministic and optimization-based alternative to sampling methods. Applying VBI to RFLVMs is nontrivial due to two key challenges: (i) the lack of an explicit probability density function (PDF) for Dirichlet process (DP) mixing weights, and (ii) the inefficiency of existing VBI approaches when handling the high-dimensional variational parameters of RFLVMs. To address these issues, we adopt the stick-breaking construction for the DP, which provides an explicit and tractable PDF over mixing weights, and propose a novel inference algorithm, block coordinate descent variational inference (BCD-VI), which partitions variational parameters into blocks and applies tailored solvers to optimize them efficiently. The resulting scalable model, referred to as SRFLVM, supports various likelihoods; we demonstrate its effectiveness under Gaussian and logistic settings. Extensive experiments on diverse benchmark datasets show that SRFLVM achieves superior scalability, computational efficiency, and performance in latent representation learning and missing data imputation, consistently outperforming state-of-the-art latent variable models, including deep generative approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信