描述具有多目标优化子组的特殊材料的规则的连贯集合。

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
Digital discovery Pub Date : 2025-06-25 eCollection Date: 2025-08-06 DOI:10.1039/d5dd00174a
Lucas Foppa, Matthias Scheffler
{"title":"描述具有多目标优化子组的特殊材料的规则的连贯集合。","authors":"Lucas Foppa, Matthias Scheffler","doi":"10.1039/d5dd00174a","DOIUrl":null,"url":null,"abstract":"<p><p>Useful materials are often statistically exceptional and they might be overlooked by artificial intelligence (AI) models that attempt to describe all materials simultaneously. These global models perform well for the majority of materials, but they do not necessarily capture the useful ones. Subgroup discovery (SGD) identifies descriptions of subsets of materials associated with exceptional values of a chosen property. Thus, SGD can better capture exceptional materials compared to widely used AI techniques. Previous studies focused on the SG that maximizes an objective function establishing a tradeoff between the SG size and the exceptionality of the distribution of property values within the SG. However, this optimization does not give a unique solution, but many SGs typically have similar objective-function values. Here, we identify a \"Pareto region\" of SGD solutions presenting a multitude of size-exceptionality tradeoffs. The approach is demonstrated by learning descriptions of perovskites with a high bulk modulus.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" ","pages":"2175-2187"},"PeriodicalIF":6.2000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12257468/pdf/","citationCount":"0","resultStr":"{\"title\":\"Coherent collections of rules describing exceptional materials identified with a multi-objective optimization of subgroups.\",\"authors\":\"Lucas Foppa, Matthias Scheffler\",\"doi\":\"10.1039/d5dd00174a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Useful materials are often statistically exceptional and they might be overlooked by artificial intelligence (AI) models that attempt to describe all materials simultaneously. These global models perform well for the majority of materials, but they do not necessarily capture the useful ones. Subgroup discovery (SGD) identifies descriptions of subsets of materials associated with exceptional values of a chosen property. Thus, SGD can better capture exceptional materials compared to widely used AI techniques. Previous studies focused on the SG that maximizes an objective function establishing a tradeoff between the SG size and the exceptionality of the distribution of property values within the SG. However, this optimization does not give a unique solution, but many SGs typically have similar objective-function values. Here, we identify a \\\"Pareto region\\\" of SGD solutions presenting a multitude of size-exceptionality tradeoffs. The approach is demonstrated by learning descriptions of perovskites with a high bulk modulus.</p>\",\"PeriodicalId\":72816,\"journal\":{\"name\":\"Digital discovery\",\"volume\":\" \",\"pages\":\"2175-2187\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12257468/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1039/d5dd00174a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/6 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d5dd00174a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/6 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

有用的材料通常在统计上是例外的,它们可能被试图同时描述所有材料的人工智能(AI)模型所忽视。这些全局模型对大多数材料表现良好,但它们不一定能捕获有用的材料。子组发现(SGD)标识与所选属性的异常值相关联的材料子集的描述。因此,与广泛使用的人工智能技术相比,SGD可以更好地捕获特殊材料。以前的研究集中在SG上,它使目标函数最大化,在SG大小和SG内财产价值分布的异常性之间建立了权衡。然而,这种优化并没有给出唯一的解决方案,但许多SGs通常具有相似的目标函数值。在这里,我们确定了SGD解决方案的“帕累托区域”,呈现了大量的尺寸异常权衡。该方法通过学习具有高体积模量的钙钛矿的描述来证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coherent collections of rules describing exceptional materials identified with a multi-objective optimization of subgroups.

Useful materials are often statistically exceptional and they might be overlooked by artificial intelligence (AI) models that attempt to describe all materials simultaneously. These global models perform well for the majority of materials, but they do not necessarily capture the useful ones. Subgroup discovery (SGD) identifies descriptions of subsets of materials associated with exceptional values of a chosen property. Thus, SGD can better capture exceptional materials compared to widely used AI techniques. Previous studies focused on the SG that maximizes an objective function establishing a tradeoff between the SG size and the exceptionality of the distribution of property values within the SG. However, this optimization does not give a unique solution, but many SGs typically have similar objective-function values. Here, we identify a "Pareto region" of SGD solutions presenting a multitude of size-exceptionality tradeoffs. The approach is demonstrated by learning descriptions of perovskites with a high bulk modulus.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信