Lorena Bociu, Matthew Broussard, Giovanna Guidoboni, Sarah Strikwerda
{"title":"基于偏微分方程和常微分方程耦合的组织灌注多尺度界面问题分析。","authors":"Lorena Bociu, Matthew Broussard, Giovanna Guidoboni, Sarah Strikwerda","doi":"10.1137/23m1628073","DOIUrl":null,"url":null,"abstract":"<p><p>In biomechanics, local phenomena, such as tissue perfusion, are strictly related to the global features of the surrounding blood circulation. In this paper, we propose a heterogeneous model where a local, accurate, 3D description of tissue perfusion by means of fluid flows through deformable porous media equations is coupled with a systemic, 0D, lumped model of the remainder of the circulation, where the fluid flow through a vascular network is described via its analog with a current flowing through an electric circuit. This represents a multiscale strategy, which couples an initial boundary value problem to be used in a specific tissue region with an initial value problem in the surrounding circulatory system. This PDE/ODE coupling leads to interface conditions enforcing the continuity of mass and the balance of stresses across models at different scales, and careful consideration is taken to address this interface mismatch. The resulting system involves PDEs of mixed type with interface conditions depending on nonlinear ODEs. A new result on local existence of solutions for this multiscale interface coupling is provided in this article.</p>","PeriodicalId":49791,"journal":{"name":"Multiscale Modeling & Simulation","volume":"23 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12263116/pdf/","citationCount":"0","resultStr":"{\"title\":\"ANALYSIS OF A MULTISCALE INTERFACE PROBLEM BASED ON THE COUPLING OF PARTIAL AND ORDINARY DIFFERENTIAL EQUATIONS TO MODEL TISSUE PERFUSION.\",\"authors\":\"Lorena Bociu, Matthew Broussard, Giovanna Guidoboni, Sarah Strikwerda\",\"doi\":\"10.1137/23m1628073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In biomechanics, local phenomena, such as tissue perfusion, are strictly related to the global features of the surrounding blood circulation. In this paper, we propose a heterogeneous model where a local, accurate, 3D description of tissue perfusion by means of fluid flows through deformable porous media equations is coupled with a systemic, 0D, lumped model of the remainder of the circulation, where the fluid flow through a vascular network is described via its analog with a current flowing through an electric circuit. This represents a multiscale strategy, which couples an initial boundary value problem to be used in a specific tissue region with an initial value problem in the surrounding circulatory system. This PDE/ODE coupling leads to interface conditions enforcing the continuity of mass and the balance of stresses across models at different scales, and careful consideration is taken to address this interface mismatch. The resulting system involves PDEs of mixed type with interface conditions depending on nonlinear ODEs. A new result on local existence of solutions for this multiscale interface coupling is provided in this article.</p>\",\"PeriodicalId\":49791,\"journal\":{\"name\":\"Multiscale Modeling & Simulation\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12263116/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multiscale Modeling & Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1628073\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiscale Modeling & Simulation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1628073","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
ANALYSIS OF A MULTISCALE INTERFACE PROBLEM BASED ON THE COUPLING OF PARTIAL AND ORDINARY DIFFERENTIAL EQUATIONS TO MODEL TISSUE PERFUSION.
In biomechanics, local phenomena, such as tissue perfusion, are strictly related to the global features of the surrounding blood circulation. In this paper, we propose a heterogeneous model where a local, accurate, 3D description of tissue perfusion by means of fluid flows through deformable porous media equations is coupled with a systemic, 0D, lumped model of the remainder of the circulation, where the fluid flow through a vascular network is described via its analog with a current flowing through an electric circuit. This represents a multiscale strategy, which couples an initial boundary value problem to be used in a specific tissue region with an initial value problem in the surrounding circulatory system. This PDE/ODE coupling leads to interface conditions enforcing the continuity of mass and the balance of stresses across models at different scales, and careful consideration is taken to address this interface mismatch. The resulting system involves PDEs of mixed type with interface conditions depending on nonlinear ODEs. A new result on local existence of solutions for this multiscale interface coupling is provided in this article.
期刊介绍:
Centered around multiscale phenomena, Multiscale Modeling and Simulation (MMS) is an interdisciplinary journal focusing on the fundamental modeling and computational principles underlying various multiscale methods.
By its nature, multiscale modeling is highly interdisciplinary, with developments occurring independently across fields. A broad range of scientific and engineering problems involve multiple scales. Traditional monoscale approaches have proven to be inadequate, even with the largest supercomputers, because of the range of scales and the prohibitively large number of variables involved. Thus, there is a growing need to develop systematic modeling and simulation approaches for multiscale problems. MMS will provide a single broad, authoritative source for results in this area.