{"title":"分析脑转移癌进展中细胞膜/分泌组相互作用的蛋白质组学技术。","authors":"Iulia M Lazar","doi":"10.1080/14789450.2025.2536061","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>. The ability of cancer cells to disseminate from the primary tumor and form metastatic lesions frequently leads to fatal outcomes. Recently, however, it has been recognized that this process is driven by complex interactions between the cancer and the neighboring cells, and, overall, made possible by a supportive tumor microenvironment. The emergence of high-throughput technologies is expected to bring much needed clarity to unraveling the players and intricate communication pathways that promote metastatic progression.</p><p><strong>Areas covered: </strong>In this report, the impact of mass spectrometry and proteomic technologies on deciphering the cross-talk between cancer and tumor microenvironment cells is discussed. Focus is placed on the role of cell-membrane and secretome proteins as the main enablers of this cross-talk, and on the challenges presented by metastatic tumors that evolve in the brain. Future prospects are assessed in the context of recent biology, technology, and data analysis breakthroughs.</p><p><strong>Expert opinion: </strong>Advancements in high-throughput proteomic technologies, complemented by the exciting potential of new disease model systems and data processing abilities of artificial intelligence, are expected to bring groundbreaking progress in deciphering the fundamental biological mechanisms that support cancer behavior and metastatic development, revealing novel therapeutic targets, and guiding innovative intervention approaches.</p>","PeriodicalId":50463,"journal":{"name":"Expert Review of Proteomics","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proteomic technologies for profiling cell-membrane/secretome interactions in brain metastatic cancer progression.\",\"authors\":\"Iulia M Lazar\",\"doi\":\"10.1080/14789450.2025.2536061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>. The ability of cancer cells to disseminate from the primary tumor and form metastatic lesions frequently leads to fatal outcomes. Recently, however, it has been recognized that this process is driven by complex interactions between the cancer and the neighboring cells, and, overall, made possible by a supportive tumor microenvironment. The emergence of high-throughput technologies is expected to bring much needed clarity to unraveling the players and intricate communication pathways that promote metastatic progression.</p><p><strong>Areas covered: </strong>In this report, the impact of mass spectrometry and proteomic technologies on deciphering the cross-talk between cancer and tumor microenvironment cells is discussed. Focus is placed on the role of cell-membrane and secretome proteins as the main enablers of this cross-talk, and on the challenges presented by metastatic tumors that evolve in the brain. Future prospects are assessed in the context of recent biology, technology, and data analysis breakthroughs.</p><p><strong>Expert opinion: </strong>Advancements in high-throughput proteomic technologies, complemented by the exciting potential of new disease model systems and data processing abilities of artificial intelligence, are expected to bring groundbreaking progress in deciphering the fundamental biological mechanisms that support cancer behavior and metastatic development, revealing novel therapeutic targets, and guiding innovative intervention approaches.</p>\",\"PeriodicalId\":50463,\"journal\":{\"name\":\"Expert Review of Proteomics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Review of Proteomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/14789450.2025.2536061\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Review of Proteomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/14789450.2025.2536061","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Proteomic technologies for profiling cell-membrane/secretome interactions in brain metastatic cancer progression.
Introduction: . The ability of cancer cells to disseminate from the primary tumor and form metastatic lesions frequently leads to fatal outcomes. Recently, however, it has been recognized that this process is driven by complex interactions between the cancer and the neighboring cells, and, overall, made possible by a supportive tumor microenvironment. The emergence of high-throughput technologies is expected to bring much needed clarity to unraveling the players and intricate communication pathways that promote metastatic progression.
Areas covered: In this report, the impact of mass spectrometry and proteomic technologies on deciphering the cross-talk between cancer and tumor microenvironment cells is discussed. Focus is placed on the role of cell-membrane and secretome proteins as the main enablers of this cross-talk, and on the challenges presented by metastatic tumors that evolve in the brain. Future prospects are assessed in the context of recent biology, technology, and data analysis breakthroughs.
Expert opinion: Advancements in high-throughput proteomic technologies, complemented by the exciting potential of new disease model systems and data processing abilities of artificial intelligence, are expected to bring groundbreaking progress in deciphering the fundamental biological mechanisms that support cancer behavior and metastatic development, revealing novel therapeutic targets, and guiding innovative intervention approaches.
期刊介绍:
Expert Review of Proteomics (ISSN 1478-9450) seeks to collect together technologies, methods and discoveries from the field of proteomics to advance scientific understanding of the many varied roles protein expression plays in human health and disease.
The journal coverage includes, but is not limited to, overviews of specific technological advances in the development of protein arrays, interaction maps, data archives and biological assays, performance of new technologies and prospects for future drug discovery.
The journal adopts the unique Expert Review article format, offering a complete overview of current thinking in a key technology area, research or clinical practice, augmented by the following sections:
Expert Opinion - a personal view on the most effective or promising strategies and a clear perspective of future prospects within a realistic timescale
Article highlights - an executive summary cutting to the author''s most critical points.