{"title":"快速和容易的融合根系统发育树到根系统发育网络。","authors":"Louxin Zhang, Banu Cetinkaya, Daniel H Huson","doi":"10.1093/sysbio/syaf049","DOIUrl":null,"url":null,"abstract":"<p><p>Unrooted phylogenetic networks are commonly used to represent evolutionary data in the presence of incompatibilities. While rooted phylogenetic networks offer a more explicit framework for depicting evolutionary histories involving reticulate events, they are reported less frequently, probably due to a lack of tools that are as easily applicable as those for unrooted networks. Here, we introduce PhyloFusion, a fast and user-friendly method for constructing rooted phylogenetic networks from sets of rooted phylogenetic trees. The resulting networks have the tree-child property. The algorithm accommodates trees with unresolved nodes -often resulting from the contraction of low-support edges- as well as some degree of missing taxa. We demonstrate its application to the analysis of functionally related gene groups and show that it can efficiently handle datasets comprising tens of trees or hundreds of taxa. An open source implementation of PhyloFusion is available as part of the SplitsTree app: https://www.github.com/husonlab/splitstree6 All data available here: https://doi.org/10.5061/dryad.k3j9kd5h5.</p>","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PhyloFusion- Fast and easy fusion of rooted phylogenetic trees into rooted phylogenetic networks.\",\"authors\":\"Louxin Zhang, Banu Cetinkaya, Daniel H Huson\",\"doi\":\"10.1093/sysbio/syaf049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Unrooted phylogenetic networks are commonly used to represent evolutionary data in the presence of incompatibilities. While rooted phylogenetic networks offer a more explicit framework for depicting evolutionary histories involving reticulate events, they are reported less frequently, probably due to a lack of tools that are as easily applicable as those for unrooted networks. Here, we introduce PhyloFusion, a fast and user-friendly method for constructing rooted phylogenetic networks from sets of rooted phylogenetic trees. The resulting networks have the tree-child property. The algorithm accommodates trees with unresolved nodes -often resulting from the contraction of low-support edges- as well as some degree of missing taxa. We demonstrate its application to the analysis of functionally related gene groups and show that it can efficiently handle datasets comprising tens of trees or hundreds of taxa. An open source implementation of PhyloFusion is available as part of the SplitsTree app: https://www.github.com/husonlab/splitstree6 All data available here: https://doi.org/10.5061/dryad.k3j9kd5h5.</p>\",\"PeriodicalId\":22120,\"journal\":{\"name\":\"Systematic Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systematic Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/sysbio/syaf049\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systematic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/sysbio/syaf049","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
PhyloFusion- Fast and easy fusion of rooted phylogenetic trees into rooted phylogenetic networks.
Unrooted phylogenetic networks are commonly used to represent evolutionary data in the presence of incompatibilities. While rooted phylogenetic networks offer a more explicit framework for depicting evolutionary histories involving reticulate events, they are reported less frequently, probably due to a lack of tools that are as easily applicable as those for unrooted networks. Here, we introduce PhyloFusion, a fast and user-friendly method for constructing rooted phylogenetic networks from sets of rooted phylogenetic trees. The resulting networks have the tree-child property. The algorithm accommodates trees with unresolved nodes -often resulting from the contraction of low-support edges- as well as some degree of missing taxa. We demonstrate its application to the analysis of functionally related gene groups and show that it can efficiently handle datasets comprising tens of trees or hundreds of taxa. An open source implementation of PhyloFusion is available as part of the SplitsTree app: https://www.github.com/husonlab/splitstree6 All data available here: https://doi.org/10.5061/dryad.k3j9kd5h5.
期刊介绍:
Systematic Biology is the bimonthly journal of the Society of Systematic Biologists. Papers for the journal are original contributions to the theory, principles, and methods of systematics as well as phylogeny, evolution, morphology, biogeography, paleontology, genetics, and the classification of all living things. A Points of View section offers a forum for discussion, while book reviews and announcements of general interest are also featured.