{"title":"天体物理学:起源于牛顿学说的一门现代学科。","authors":"Maria Paola Vaccaro","doi":"10.1098/rsta.2023.0294","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the formation and evolution of stellar-mass binary black holes (BBHs) requires a thorough investigation of the key physical processes involved. While one pathway involves the isolated evolution of massive binary stars, affected by uncertain stages like core-collapse supernovae and common envelope evolution, an alternative channel is dynamical formation in dense stellar environments. Newtonian gravity has traditionally provided a robust and computationally efficient framework for modeling large-scale gravitational interactions. However, accurately capturing close encounters and black hole mergers necessitates the use of general relativity. This work focuses on assessing the applicability of post-Newtonian gravity in bridging these regimes, offering a physically insightful and computationally tractable approach to modeling BBH formation in the gravitational-wave era of astronomy.This article is part of the theme issue 'Newton, <i>Principia</i>, Newton Geneva Edition (17th-19th) and modern Newtonian mechanics: heritage, past & present'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"383 2301","pages":"20230294"},"PeriodicalIF":3.7000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Astrophysics: a modern discipline with a Newtonian origin.\",\"authors\":\"Maria Paola Vaccaro\",\"doi\":\"10.1098/rsta.2023.0294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding the formation and evolution of stellar-mass binary black holes (BBHs) requires a thorough investigation of the key physical processes involved. While one pathway involves the isolated evolution of massive binary stars, affected by uncertain stages like core-collapse supernovae and common envelope evolution, an alternative channel is dynamical formation in dense stellar environments. Newtonian gravity has traditionally provided a robust and computationally efficient framework for modeling large-scale gravitational interactions. However, accurately capturing close encounters and black hole mergers necessitates the use of general relativity. This work focuses on assessing the applicability of post-Newtonian gravity in bridging these regimes, offering a physically insightful and computationally tractable approach to modeling BBH formation in the gravitational-wave era of astronomy.This article is part of the theme issue 'Newton, <i>Principia</i>, Newton Geneva Edition (17th-19th) and modern Newtonian mechanics: heritage, past & present'.</p>\",\"PeriodicalId\":19879,\"journal\":{\"name\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"volume\":\"383 2301\",\"pages\":\"20230294\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsta.2023.0294\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2023.0294","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Astrophysics: a modern discipline with a Newtonian origin.
Understanding the formation and evolution of stellar-mass binary black holes (BBHs) requires a thorough investigation of the key physical processes involved. While one pathway involves the isolated evolution of massive binary stars, affected by uncertain stages like core-collapse supernovae and common envelope evolution, an alternative channel is dynamical formation in dense stellar environments. Newtonian gravity has traditionally provided a robust and computationally efficient framework for modeling large-scale gravitational interactions. However, accurately capturing close encounters and black hole mergers necessitates the use of general relativity. This work focuses on assessing the applicability of post-Newtonian gravity in bridging these regimes, offering a physically insightful and computationally tractable approach to modeling BBH formation in the gravitational-wave era of astronomy.This article is part of the theme issue 'Newton, Principia, Newton Geneva Edition (17th-19th) and modern Newtonian mechanics: heritage, past & present'.
期刊介绍:
Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.