Laura Drebushenko, Natalya Belous, Fritz W Lischka, Qiong Zhou, Ayse Malci, Michael S Sidorov, Barrington Burnett, Martin L Doughty
{"title":"泛素E3连接酶UBE3A调控与AMPA受体内吞循环相关的GRIPAP1和PACSIN1蛋白。","authors":"Laura Drebushenko, Natalya Belous, Fritz W Lischka, Qiong Zhou, Ayse Malci, Michael S Sidorov, Barrington Burnett, Martin L Doughty","doi":"10.1080/10985549.2025.2470431","DOIUrl":null,"url":null,"abstract":"<p><p>Angelman syndrome (AS) is a neurodevelopmental disorder characterized by cognitive and language impairments, seizures, reduced or fragmented sleep, motor ataxia, and a characteristic happy affect. AS arises due to the neuronal loss of UBE3A, an E3 ligase that regulates protein abundance through the addition of lysine 48 (K48)-linked polyubiquitin chains to proteins targeted for degradation by the ubiquitin proteasome system (UPS). Using a dual SMAD inhibition protocol to derive cortical neurons from human induced pluripotent stem cells, we examined <i>UBE3A</i> deletion effects on the neuronal proteome by liquid chromatography tandem mass spectrometry (LC-MS/MS). LC-MS/MS identified 645 proteins differentially abundant between <i>UBE3A</i> knockout (KO) and isogenic <i>UBE3A</i> wild-type control cortical neurons. Proteins with increased abundance with UBE3A loss of function include GRIPAP1 and PACSIN1, synaptic proteins implicated in AMPA receptor recycling. We provide evidence UBE3A polyubiquitinates PACSIN1 and GRIPAP1 to regulate protein turnover, with potential implications for impaired activity-dependent synaptic plasticity observed in AS.</p>","PeriodicalId":18658,"journal":{"name":"Molecular and Cellular Biology","volume":" ","pages":"353-368"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Ubiquitin E3 Ligase UBE3A Regulates GRIPAP1 and PACSIN1 Proteins Linked to the Endocytic Recycling of AMPA Receptors.\",\"authors\":\"Laura Drebushenko, Natalya Belous, Fritz W Lischka, Qiong Zhou, Ayse Malci, Michael S Sidorov, Barrington Burnett, Martin L Doughty\",\"doi\":\"10.1080/10985549.2025.2470431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Angelman syndrome (AS) is a neurodevelopmental disorder characterized by cognitive and language impairments, seizures, reduced or fragmented sleep, motor ataxia, and a characteristic happy affect. AS arises due to the neuronal loss of UBE3A, an E3 ligase that regulates protein abundance through the addition of lysine 48 (K48)-linked polyubiquitin chains to proteins targeted for degradation by the ubiquitin proteasome system (UPS). Using a dual SMAD inhibition protocol to derive cortical neurons from human induced pluripotent stem cells, we examined <i>UBE3A</i> deletion effects on the neuronal proteome by liquid chromatography tandem mass spectrometry (LC-MS/MS). LC-MS/MS identified 645 proteins differentially abundant between <i>UBE3A</i> knockout (KO) and isogenic <i>UBE3A</i> wild-type control cortical neurons. Proteins with increased abundance with UBE3A loss of function include GRIPAP1 and PACSIN1, synaptic proteins implicated in AMPA receptor recycling. We provide evidence UBE3A polyubiquitinates PACSIN1 and GRIPAP1 to regulate protein turnover, with potential implications for impaired activity-dependent synaptic plasticity observed in AS.</p>\",\"PeriodicalId\":18658,\"journal\":{\"name\":\"Molecular and Cellular Biology\",\"volume\":\" \",\"pages\":\"353-368\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and Cellular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/10985549.2025.2470431\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10985549.2025.2470431","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The Ubiquitin E3 Ligase UBE3A Regulates GRIPAP1 and PACSIN1 Proteins Linked to the Endocytic Recycling of AMPA Receptors.
Angelman syndrome (AS) is a neurodevelopmental disorder characterized by cognitive and language impairments, seizures, reduced or fragmented sleep, motor ataxia, and a characteristic happy affect. AS arises due to the neuronal loss of UBE3A, an E3 ligase that regulates protein abundance through the addition of lysine 48 (K48)-linked polyubiquitin chains to proteins targeted for degradation by the ubiquitin proteasome system (UPS). Using a dual SMAD inhibition protocol to derive cortical neurons from human induced pluripotent stem cells, we examined UBE3A deletion effects on the neuronal proteome by liquid chromatography tandem mass spectrometry (LC-MS/MS). LC-MS/MS identified 645 proteins differentially abundant between UBE3A knockout (KO) and isogenic UBE3A wild-type control cortical neurons. Proteins with increased abundance with UBE3A loss of function include GRIPAP1 and PACSIN1, synaptic proteins implicated in AMPA receptor recycling. We provide evidence UBE3A polyubiquitinates PACSIN1 and GRIPAP1 to regulate protein turnover, with potential implications for impaired activity-dependent synaptic plasticity observed in AS.
期刊介绍:
Molecular and Cellular Biology (MCB) showcases significant discoveries in cellular morphology and function, genome organization, regulation of genetic expression, morphogenesis, and somatic cell genetics. The journal also examines viral systems, publishing papers that emphasize their impact on the cell.