{"title":"非配对多视图聚类的多级可靠制导。","authors":"Like Xin, Wanqi Yang, Lei Wang, Ming Yang","doi":"10.1109/TNNLS.2025.3586306","DOIUrl":null,"url":null,"abstract":"<p><p>In this article, we address the challenging problem of unpaired multiview clustering (UMC), which aims to achieve effective joint clustering using unpaired samples observed across multiple views. Traditional incomplete multiview clustering (IMC) methods typically rely on paired samples to capture complementary information between views. However, such strategies become impractical in the UMC due to the absence of paired samples. Although some researchers have attempted to address this issue by preserving consistent cluster structures across views, effectively mining such consistency remains challenging when the cluster structures with low confidence. Therefore, we propose a novel method, multilevel reliable guidance for UMC (MRG-UMC), which integrates multilevel clustering and reliable view guidance to learn consistent and confident cluster structures from three perspectives. Specifically, inner view multilevel clustering exploits high-confidence sample pairs across different levels to reduce the impact of boundary samples, resulting in more confident cluster structures. Synthesized-view alignment leverages a synthesized view to mitigate cross-view discrepancies and promote consistency. Cross-view guidance employs a reliable view guidance strategy to enhance the clustering confidence of poorly clustered views. These three modules are jointly optimized across multiple levels to achieve consistent and confident cluster structures. Furthermore, theoretical analyses verify the effectiveness of MRG-UMC in enhancing clustering confidence. Extensive experimental results show that MRG-UMC outperforms state-of-the-art UMC methods, achieving an average NMI improvement of 12.95% on multiview datasets. The source code is available at https://anonymous.4open.science/r/MRG-UMC-5E20.</p>","PeriodicalId":13303,"journal":{"name":"IEEE transactions on neural networks and learning systems","volume":"PP ","pages":"18968-18982"},"PeriodicalIF":8.9000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multilevel Reliable Guidance for Unpaired Multiview Clustering.\",\"authors\":\"Like Xin, Wanqi Yang, Lei Wang, Ming Yang\",\"doi\":\"10.1109/TNNLS.2025.3586306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this article, we address the challenging problem of unpaired multiview clustering (UMC), which aims to achieve effective joint clustering using unpaired samples observed across multiple views. Traditional incomplete multiview clustering (IMC) methods typically rely on paired samples to capture complementary information between views. However, such strategies become impractical in the UMC due to the absence of paired samples. Although some researchers have attempted to address this issue by preserving consistent cluster structures across views, effectively mining such consistency remains challenging when the cluster structures with low confidence. Therefore, we propose a novel method, multilevel reliable guidance for UMC (MRG-UMC), which integrates multilevel clustering and reliable view guidance to learn consistent and confident cluster structures from three perspectives. Specifically, inner view multilevel clustering exploits high-confidence sample pairs across different levels to reduce the impact of boundary samples, resulting in more confident cluster structures. Synthesized-view alignment leverages a synthesized view to mitigate cross-view discrepancies and promote consistency. Cross-view guidance employs a reliable view guidance strategy to enhance the clustering confidence of poorly clustered views. These three modules are jointly optimized across multiple levels to achieve consistent and confident cluster structures. Furthermore, theoretical analyses verify the effectiveness of MRG-UMC in enhancing clustering confidence. Extensive experimental results show that MRG-UMC outperforms state-of-the-art UMC methods, achieving an average NMI improvement of 12.95% on multiview datasets. The source code is available at https://anonymous.4open.science/r/MRG-UMC-5E20.</p>\",\"PeriodicalId\":13303,\"journal\":{\"name\":\"IEEE transactions on neural networks and learning systems\",\"volume\":\"PP \",\"pages\":\"18968-18982\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on neural networks and learning systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/TNNLS.2025.3586306\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks and learning systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TNNLS.2025.3586306","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Multilevel Reliable Guidance for Unpaired Multiview Clustering.
In this article, we address the challenging problem of unpaired multiview clustering (UMC), which aims to achieve effective joint clustering using unpaired samples observed across multiple views. Traditional incomplete multiview clustering (IMC) methods typically rely on paired samples to capture complementary information between views. However, such strategies become impractical in the UMC due to the absence of paired samples. Although some researchers have attempted to address this issue by preserving consistent cluster structures across views, effectively mining such consistency remains challenging when the cluster structures with low confidence. Therefore, we propose a novel method, multilevel reliable guidance for UMC (MRG-UMC), which integrates multilevel clustering and reliable view guidance to learn consistent and confident cluster structures from three perspectives. Specifically, inner view multilevel clustering exploits high-confidence sample pairs across different levels to reduce the impact of boundary samples, resulting in more confident cluster structures. Synthesized-view alignment leverages a synthesized view to mitigate cross-view discrepancies and promote consistency. Cross-view guidance employs a reliable view guidance strategy to enhance the clustering confidence of poorly clustered views. These three modules are jointly optimized across multiple levels to achieve consistent and confident cluster structures. Furthermore, theoretical analyses verify the effectiveness of MRG-UMC in enhancing clustering confidence. Extensive experimental results show that MRG-UMC outperforms state-of-the-art UMC methods, achieving an average NMI improvement of 12.95% on multiview datasets. The source code is available at https://anonymous.4open.science/r/MRG-UMC-5E20.
期刊介绍:
The focus of IEEE Transactions on Neural Networks and Learning Systems is to present scholarly articles discussing the theory, design, and applications of neural networks as well as other learning systems. The journal primarily highlights technical and scientific research in this domain.