飞蛾飞行控制的平行路径的整合反映了自然视觉线索的普遍性和相关性。

IF 6.4 1区 生物学 Q1 BIOLOGY
eLife Pub Date : 2025-07-17 DOI:10.7554/eLife.104118
Ronja Bigge, Rebecca Grittner, Anna Lisa Stöckl
{"title":"飞蛾飞行控制的平行路径的整合反映了自然视觉线索的普遍性和相关性。","authors":"Ronja Bigge, Rebecca Grittner, Anna Lisa Stöckl","doi":"10.7554/eLife.104118","DOIUrl":null,"url":null,"abstract":"<p><p>An animal's behaviour is the result of multiple neural pathways acting in parallel, receiving information across and within sensory modalities at the same time. How these pathways are integrated, particularly when their individual outputs are in conflict, is key to understanding complex natural behaviours. We investigated this question in the visually guided flight of the hummingbird hawkmoth <i>Macroglossum stellatarum</i>. These insects were recently shown to partition their visual field, using ventrolateral optic flow cues to guide their flight like most insects, while the same stimuli in the dorsal visual field evoke a novel directional response. Using behavioural experiments which set the two pathways into conflict, we tested whether and how the ventrolateral and dorsal pathway integrate to guide hawkmoth flight. Combined with environmental imaging, we demonstrate that the partitioning of the visual field followed the prevalence of visual cues in the hawkmoths' natural habitats, while the integration hierarchy of the two pathways matched the relevance of these cues for the animals' flight safety, rather than their magnitude in the experimental setup or in natural habitats. These results provide new mechanistic insights into the vision-based flight control of insects and link these to their natural context. We anticipate our findings to be the starting point for comparative investigations into parallel pathways for flight guidance in insects from differently structured natural habitats.</p>","PeriodicalId":11640,"journal":{"name":"eLife","volume":"14 ","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12270480/pdf/","citationCount":"0","resultStr":"{\"title\":\"Integration of parallel pathways for flight control in a hawkmoth reflects prevalence and relevance of natural visual cues.\",\"authors\":\"Ronja Bigge, Rebecca Grittner, Anna Lisa Stöckl\",\"doi\":\"10.7554/eLife.104118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>An animal's behaviour is the result of multiple neural pathways acting in parallel, receiving information across and within sensory modalities at the same time. How these pathways are integrated, particularly when their individual outputs are in conflict, is key to understanding complex natural behaviours. We investigated this question in the visually guided flight of the hummingbird hawkmoth <i>Macroglossum stellatarum</i>. These insects were recently shown to partition their visual field, using ventrolateral optic flow cues to guide their flight like most insects, while the same stimuli in the dorsal visual field evoke a novel directional response. Using behavioural experiments which set the two pathways into conflict, we tested whether and how the ventrolateral and dorsal pathway integrate to guide hawkmoth flight. Combined with environmental imaging, we demonstrate that the partitioning of the visual field followed the prevalence of visual cues in the hawkmoths' natural habitats, while the integration hierarchy of the two pathways matched the relevance of these cues for the animals' flight safety, rather than their magnitude in the experimental setup or in natural habitats. These results provide new mechanistic insights into the vision-based flight control of insects and link these to their natural context. We anticipate our findings to be the starting point for comparative investigations into parallel pathways for flight guidance in insects from differently structured natural habitats.</p>\",\"PeriodicalId\":11640,\"journal\":{\"name\":\"eLife\",\"volume\":\"14 \",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12270480/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eLife\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.7554/eLife.104118\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eLife","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7554/eLife.104118","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

动物的行为是多个神经通路并行作用的结果,它们同时在感觉模式之间和内部接收信息。如何整合这些途径,特别是当它们各自的输出相互冲突时,是理解复杂自然行为的关键。我们在蜂鸟天蛾的视觉引导飞行中研究了这个问题。这些昆虫最近被证明可以分割它们的视野,像大多数昆虫一样使用腹侧光流线索来引导它们的飞行,而在背部视野中同样的刺激会引起一种新的定向反应。通过行为实验,将这两条路径设置为冲突,我们测试了腹侧和背侧路径是否以及如何整合以指导飞蛾飞行。结合环境成像,我们发现在自然栖息地中,视野的划分遵循视觉线索的流行,而两种路径的整合层次与这些线索对动物飞行安全的相关性相匹配,而不是它们在实验设置或自然栖息地中的大小。这些结果为基于视觉的昆虫飞行控制提供了新的机制见解,并将这些与它们的自然环境联系起来。我们希望我们的发现能够成为比较研究昆虫在不同结构的自然栖息地中飞行引导平行路径的起点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integration of parallel pathways for flight control in a hawkmoth reflects prevalence and relevance of natural visual cues.

An animal's behaviour is the result of multiple neural pathways acting in parallel, receiving information across and within sensory modalities at the same time. How these pathways are integrated, particularly when their individual outputs are in conflict, is key to understanding complex natural behaviours. We investigated this question in the visually guided flight of the hummingbird hawkmoth Macroglossum stellatarum. These insects were recently shown to partition their visual field, using ventrolateral optic flow cues to guide their flight like most insects, while the same stimuli in the dorsal visual field evoke a novel directional response. Using behavioural experiments which set the two pathways into conflict, we tested whether and how the ventrolateral and dorsal pathway integrate to guide hawkmoth flight. Combined with environmental imaging, we demonstrate that the partitioning of the visual field followed the prevalence of visual cues in the hawkmoths' natural habitats, while the integration hierarchy of the two pathways matched the relevance of these cues for the animals' flight safety, rather than their magnitude in the experimental setup or in natural habitats. These results provide new mechanistic insights into the vision-based flight control of insects and link these to their natural context. We anticipate our findings to be the starting point for comparative investigations into parallel pathways for flight guidance in insects from differently structured natural habitats.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
eLife
eLife BIOLOGY-
CiteScore
12.90
自引率
3.90%
发文量
3122
审稿时长
17 weeks
期刊介绍: eLife is a distinguished, not-for-profit, peer-reviewed open access scientific journal that specializes in the fields of biomedical and life sciences. eLife is known for its selective publication process, which includes a variety of article types such as: Research Articles: Detailed reports of original research findings. Short Reports: Concise presentations of significant findings that do not warrant a full-length research article. Tools and Resources: Descriptions of new tools, technologies, or resources that facilitate scientific research. Research Advances: Brief reports on significant scientific advancements that have immediate implications for the field. Scientific Correspondence: Short communications that comment on or provide additional information related to published articles. Review Articles: Comprehensive overviews of a specific topic or field within the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信