Lina Omary, Emanuel E Canfora, Marie-Luise Puhlmann, Asimenia Gavriilidou, Iris Rijnaarts, Jens J Holst, Yvonne M H Op den Kamp-Bruls, Willem M de Vos, Ellen E Blaak
{"title":"内在菊苣根纤维调节结肠微生物丁酸盐产生途径并改善肥胖个体的胰岛素敏感性。","authors":"Lina Omary, Emanuel E Canfora, Marie-Luise Puhlmann, Asimenia Gavriilidou, Iris Rijnaarts, Jens J Holst, Yvonne M H Op den Kamp-Bruls, Willem M de Vos, Ellen E Blaak","doi":"10.1016/j.xcrm.2025.102237","DOIUrl":null,"url":null,"abstract":"<p><p>Type 2 diabetes and obesity have become major public health concerns. Growing evidence suggests that increased dietary fiber intake, through its interaction with the gut microbiota, may help prevent these diseases. Here, we demonstrate in a 12-week randomized, placebo-controlled trial in individuals at risk for type 2 diabetes that intake of an intrinsic fiber product, consisting of entire plant cells, tended to improve peripheral insulin sensitivity (p = 0.085), increased whole-body insulin sensitivity (p = 0.032), reduced circulating triglycerides (p = 0.049), and tended to reduce intrahepatic lipid content (p = 0.063), along with an increased proportion of small adipocytes (p = 0.008). Phylogenetic and metagenomic analysis revealed that these outcomes coincided with increased levels of fiber-degrading Bifidobacterium spp. and butyrate-producing Anaerostipes spp. and a functional shift toward a distal butyrogenic trophic chain while the best responding individuals had increased levels of pectin degraders that may produce propionate. Our findings demonstrate the pivotal role of slowly fermented, intrinsic plant cell fibers in improving cardiometabolic health. This study was registered at ClinicalTrials.gov (NCT04714944).</p>","PeriodicalId":9822,"journal":{"name":"Cell Reports Medicine","volume":"6 7","pages":"102237"},"PeriodicalIF":11.7000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intrinsic chicory root fibers modulate colonic microbial butyrate-producing pathways and improve insulin sensitivity in individuals with obesity.\",\"authors\":\"Lina Omary, Emanuel E Canfora, Marie-Luise Puhlmann, Asimenia Gavriilidou, Iris Rijnaarts, Jens J Holst, Yvonne M H Op den Kamp-Bruls, Willem M de Vos, Ellen E Blaak\",\"doi\":\"10.1016/j.xcrm.2025.102237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Type 2 diabetes and obesity have become major public health concerns. Growing evidence suggests that increased dietary fiber intake, through its interaction with the gut microbiota, may help prevent these diseases. Here, we demonstrate in a 12-week randomized, placebo-controlled trial in individuals at risk for type 2 diabetes that intake of an intrinsic fiber product, consisting of entire plant cells, tended to improve peripheral insulin sensitivity (p = 0.085), increased whole-body insulin sensitivity (p = 0.032), reduced circulating triglycerides (p = 0.049), and tended to reduce intrahepatic lipid content (p = 0.063), along with an increased proportion of small adipocytes (p = 0.008). Phylogenetic and metagenomic analysis revealed that these outcomes coincided with increased levels of fiber-degrading Bifidobacterium spp. and butyrate-producing Anaerostipes spp. and a functional shift toward a distal butyrogenic trophic chain while the best responding individuals had increased levels of pectin degraders that may produce propionate. Our findings demonstrate the pivotal role of slowly fermented, intrinsic plant cell fibers in improving cardiometabolic health. This study was registered at ClinicalTrials.gov (NCT04714944).</p>\",\"PeriodicalId\":9822,\"journal\":{\"name\":\"Cell Reports Medicine\",\"volume\":\"6 7\",\"pages\":\"102237\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xcrm.2025.102237\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xcrm.2025.102237","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Intrinsic chicory root fibers modulate colonic microbial butyrate-producing pathways and improve insulin sensitivity in individuals with obesity.
Type 2 diabetes and obesity have become major public health concerns. Growing evidence suggests that increased dietary fiber intake, through its interaction with the gut microbiota, may help prevent these diseases. Here, we demonstrate in a 12-week randomized, placebo-controlled trial in individuals at risk for type 2 diabetes that intake of an intrinsic fiber product, consisting of entire plant cells, tended to improve peripheral insulin sensitivity (p = 0.085), increased whole-body insulin sensitivity (p = 0.032), reduced circulating triglycerides (p = 0.049), and tended to reduce intrahepatic lipid content (p = 0.063), along with an increased proportion of small adipocytes (p = 0.008). Phylogenetic and metagenomic analysis revealed that these outcomes coincided with increased levels of fiber-degrading Bifidobacterium spp. and butyrate-producing Anaerostipes spp. and a functional shift toward a distal butyrogenic trophic chain while the best responding individuals had increased levels of pectin degraders that may produce propionate. Our findings demonstrate the pivotal role of slowly fermented, intrinsic plant cell fibers in improving cardiometabolic health. This study was registered at ClinicalTrials.gov (NCT04714944).
Cell Reports MedicineBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
15.00
自引率
1.40%
发文量
231
审稿时长
40 days
期刊介绍:
Cell Reports Medicine is an esteemed open-access journal by Cell Press that publishes groundbreaking research in translational and clinical biomedical sciences, influencing human health and medicine.
Our journal ensures wide visibility and accessibility, reaching scientists and clinicians across various medical disciplines. We publish original research that spans from intriguing human biology concepts to all aspects of clinical work. We encourage submissions that introduce innovative ideas, forging new paths in clinical research and practice. We also welcome studies that provide vital information, enhancing our understanding of current standards of care in diagnosis, treatment, and prognosis. This encompasses translational studies, clinical trials (including long-term follow-ups), genomics, biomarker discovery, and technological advancements that contribute to diagnostics, treatment, and healthcare. Additionally, studies based on vertebrate model organisms are within the scope of the journal, as long as they directly relate to human health and disease.