Yan Sun, Yan Zhao, Junliang Shang, Baojuan Qin, Xiaohan Zhang, Jin-Xing Liu
{"title":"scRDAN:一个强大的区域适应网络,用于跨单细胞RNA测序数据的细胞类型注释。","authors":"Yan Sun, Yan Zhao, Junliang Shang, Baojuan Qin, Xiaohan Zhang, Jin-Xing Liu","doi":"10.1093/bib/bbaf344","DOIUrl":null,"url":null,"abstract":"<p><p>Single-cell RNA sequencing technology facilitates the recognition of diverse cell types and subgroups, playing a crucial role in investigating cellular heterogeneity. Cell type annotation, a crucial process in single-cell RNA sequencing analysis, is often influenced by noise and batch effects. To address these challenges, we propose scRDAN, which is a robust domain adaptation network comprising three modules: the denoising domain adaptation module, the fine-grained discrimination module, and the robustness enhancement module. The denoising domain adaptation module mitigates noise interference through feature reconstruction in domains, while leveraging adversarial learning to align data distributions, improving annotation accuracy and robustness against batch effects. The fine-grained discrimination module maintains intra-class compactness and enhances inter-class separability, reducing feature overlap and improving cell type distinction. Finally, the robustness enhancement module introduces noise from various perspectives in both domains, enhancing robustness and generalization. We evaluate scRDAN on simulated, cross-platforms, and cross-species datasets, comparing it with advanced methods. Results demonstrate that scRDAN outperforms existing methods in handling batch effects and cell type annotation.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 4","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12266959/pdf/","citationCount":"0","resultStr":"{\"title\":\"scRDAN: a robust domain adaptation network for cell type annotation across single-cell RNA sequencing data.\",\"authors\":\"Yan Sun, Yan Zhao, Junliang Shang, Baojuan Qin, Xiaohan Zhang, Jin-Xing Liu\",\"doi\":\"10.1093/bib/bbaf344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Single-cell RNA sequencing technology facilitates the recognition of diverse cell types and subgroups, playing a crucial role in investigating cellular heterogeneity. Cell type annotation, a crucial process in single-cell RNA sequencing analysis, is often influenced by noise and batch effects. To address these challenges, we propose scRDAN, which is a robust domain adaptation network comprising three modules: the denoising domain adaptation module, the fine-grained discrimination module, and the robustness enhancement module. The denoising domain adaptation module mitigates noise interference through feature reconstruction in domains, while leveraging adversarial learning to align data distributions, improving annotation accuracy and robustness against batch effects. The fine-grained discrimination module maintains intra-class compactness and enhances inter-class separability, reducing feature overlap and improving cell type distinction. Finally, the robustness enhancement module introduces noise from various perspectives in both domains, enhancing robustness and generalization. We evaluate scRDAN on simulated, cross-platforms, and cross-species datasets, comparing it with advanced methods. Results demonstrate that scRDAN outperforms existing methods in handling batch effects and cell type annotation.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 4\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12266959/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf344\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf344","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
scRDAN: a robust domain adaptation network for cell type annotation across single-cell RNA sequencing data.
Single-cell RNA sequencing technology facilitates the recognition of diverse cell types and subgroups, playing a crucial role in investigating cellular heterogeneity. Cell type annotation, a crucial process in single-cell RNA sequencing analysis, is often influenced by noise and batch effects. To address these challenges, we propose scRDAN, which is a robust domain adaptation network comprising three modules: the denoising domain adaptation module, the fine-grained discrimination module, and the robustness enhancement module. The denoising domain adaptation module mitigates noise interference through feature reconstruction in domains, while leveraging adversarial learning to align data distributions, improving annotation accuracy and robustness against batch effects. The fine-grained discrimination module maintains intra-class compactness and enhances inter-class separability, reducing feature overlap and improving cell type distinction. Finally, the robustness enhancement module introduces noise from various perspectives in both domains, enhancing robustness and generalization. We evaluate scRDAN on simulated, cross-platforms, and cross-species datasets, comparing it with advanced methods. Results demonstrate that scRDAN outperforms existing methods in handling batch effects and cell type annotation.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.