Xiao-Wei Li, Yun-Fei Chen, Lan Zhou, Peng Zhou, Peng Huang, Qian Niu, Jin-Cai Li
{"title":"黄芩苷通过抑制NLRP3/caspase-1/GSDMD信号通路减轻lps - atp诱导的心肌细胞焦亡。","authors":"Xiao-Wei Li, Yun-Fei Chen, Lan Zhou, Peng Zhou, Peng Huang, Qian Niu, Jin-Cai Li","doi":"10.2478/acph-2025-0025","DOIUrl":null,"url":null,"abstract":"<p><p>Scutellarin has a good myocardial protective effect. However, the underlying mechanism of scutellarin on cardiomyocyte pyroptosis remains unclear. In this study, we elucidated the mechanism of scutellarin to protect the injured myocardium. The molecular docking technique was used to predict the targets of scutellarin in protecting against myocardial injury. H9c2 cell pyroptosis was induced by lipopolysaccharide (LPS) and adenosine triphosphate (ATP). Then, the activities of CK and LDH were measured through a colourimetric assay. The level of cTnI was quantified by ELISA. mRNA expressions of NLRP3, cysteine-dependent aspartate-specific protease-1 (caspase-1), gasdermin D (GSDMD), interleukin-1β (IL-1β), and interleukin-18 (IL-18) were analyzed using RT-qPCR. Protein expressions of NLRP3, caspase-1, and GSDMD were detected by the immunofluorescence technique. Protein expression of NLRP3 was analysed by using Western blotting. Scutellarin had a good binding affinity with NLRP3, caspase-1, and GSDMD. Compared with LSP and ATP-treated cells, concentrations of 25, 50, and 100 µmol L<sup>-1</sup> scutellarin reduced CK and LDH activities and the level of cTnI, decreased the mRNA expression of NLRP3, caspase-1, and GSDMD. In the mechanism study, scutellarin decreased mRNA expressions of NLRP3, caspase-1, GSDMD, IL-1β, and IL-18, and reduced the fluorescence expressions of NLRP3, caspase-1, and GSDMD. Scutellarin reduced the protein expression of NLRP3. Scutellarin inhibits myocardial cell pyroptosis induced by LPS and ATP, and the mechanism is related to the NLRP3/caspase-1/GSDMD signalling pathway.</p>","PeriodicalId":7034,"journal":{"name":"Acta Pharmaceutica","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scutellarin mitigates LPS-ATP-induced cardiomyocyte pyroptosis through the inhibition of the NLRP3/caspase-1/GSDMD signalling pathway.\",\"authors\":\"Xiao-Wei Li, Yun-Fei Chen, Lan Zhou, Peng Zhou, Peng Huang, Qian Niu, Jin-Cai Li\",\"doi\":\"10.2478/acph-2025-0025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Scutellarin has a good myocardial protective effect. However, the underlying mechanism of scutellarin on cardiomyocyte pyroptosis remains unclear. In this study, we elucidated the mechanism of scutellarin to protect the injured myocardium. The molecular docking technique was used to predict the targets of scutellarin in protecting against myocardial injury. H9c2 cell pyroptosis was induced by lipopolysaccharide (LPS) and adenosine triphosphate (ATP). Then, the activities of CK and LDH were measured through a colourimetric assay. The level of cTnI was quantified by ELISA. mRNA expressions of NLRP3, cysteine-dependent aspartate-specific protease-1 (caspase-1), gasdermin D (GSDMD), interleukin-1β (IL-1β), and interleukin-18 (IL-18) were analyzed using RT-qPCR. Protein expressions of NLRP3, caspase-1, and GSDMD were detected by the immunofluorescence technique. Protein expression of NLRP3 was analysed by using Western blotting. Scutellarin had a good binding affinity with NLRP3, caspase-1, and GSDMD. Compared with LSP and ATP-treated cells, concentrations of 25, 50, and 100 µmol L<sup>-1</sup> scutellarin reduced CK and LDH activities and the level of cTnI, decreased the mRNA expression of NLRP3, caspase-1, and GSDMD. In the mechanism study, scutellarin decreased mRNA expressions of NLRP3, caspase-1, GSDMD, IL-1β, and IL-18, and reduced the fluorescence expressions of NLRP3, caspase-1, and GSDMD. Scutellarin reduced the protein expression of NLRP3. Scutellarin inhibits myocardial cell pyroptosis induced by LPS and ATP, and the mechanism is related to the NLRP3/caspase-1/GSDMD signalling pathway.</p>\",\"PeriodicalId\":7034,\"journal\":{\"name\":\"Acta Pharmaceutica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Pharmaceutica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2478/acph-2025-0025\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmaceutica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2478/acph-2025-0025","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Scutellarin mitigates LPS-ATP-induced cardiomyocyte pyroptosis through the inhibition of the NLRP3/caspase-1/GSDMD signalling pathway.
Scutellarin has a good myocardial protective effect. However, the underlying mechanism of scutellarin on cardiomyocyte pyroptosis remains unclear. In this study, we elucidated the mechanism of scutellarin to protect the injured myocardium. The molecular docking technique was used to predict the targets of scutellarin in protecting against myocardial injury. H9c2 cell pyroptosis was induced by lipopolysaccharide (LPS) and adenosine triphosphate (ATP). Then, the activities of CK and LDH were measured through a colourimetric assay. The level of cTnI was quantified by ELISA. mRNA expressions of NLRP3, cysteine-dependent aspartate-specific protease-1 (caspase-1), gasdermin D (GSDMD), interleukin-1β (IL-1β), and interleukin-18 (IL-18) were analyzed using RT-qPCR. Protein expressions of NLRP3, caspase-1, and GSDMD were detected by the immunofluorescence technique. Protein expression of NLRP3 was analysed by using Western blotting. Scutellarin had a good binding affinity with NLRP3, caspase-1, and GSDMD. Compared with LSP and ATP-treated cells, concentrations of 25, 50, and 100 µmol L-1 scutellarin reduced CK and LDH activities and the level of cTnI, decreased the mRNA expression of NLRP3, caspase-1, and GSDMD. In the mechanism study, scutellarin decreased mRNA expressions of NLRP3, caspase-1, GSDMD, IL-1β, and IL-18, and reduced the fluorescence expressions of NLRP3, caspase-1, and GSDMD. Scutellarin reduced the protein expression of NLRP3. Scutellarin inhibits myocardial cell pyroptosis induced by LPS and ATP, and the mechanism is related to the NLRP3/caspase-1/GSDMD signalling pathway.
期刊介绍:
AP is an international, multidisciplinary journal devoted to pharmaceutical and allied sciences and contains articles predominantly on core biomedical and health subjects. The aim of AP is to increase the impact of pharmaceutical research in academia, industry and laboratories. With strong emphasis on quality and originality, AP publishes reports from the discovery of a drug up to clinical practice. Topics covered are: analytics, biochemistry, biopharmaceutics, biotechnology, cell biology, cell cultures, clinical pharmacy, drug design, drug delivery, drug disposition, drug stability, gene technology, medicine (including diagnostics and therapy), medicinal chemistry, metabolism, molecular modeling, pharmacology (clinical and animal), peptide and protein chemistry, pharmacognosy, pharmacoepidemiology, pharmacoeconomics, pharmacodynamics and pharmacokinetics, protein design, radiopharmaceuticals, and toxicology.