Lydia Hildebrand Furness, Richard Sabin, Marianne Strand Torvanger, Oliver Kersten, James H Barrett, Bastiaan Star
{"title":"热带海洋哺乳动物的历史收藏是古代DNA的优秀资源。","authors":"Lydia Hildebrand Furness, Richard Sabin, Marianne Strand Torvanger, Oliver Kersten, James H Barrett, Bastiaan Star","doi":"10.1111/1755-0998.70015","DOIUrl":null,"url":null,"abstract":"<p><p>The ability to predict ancient DNA sequencing success in natural history collections is critical to reducing the amount of destructive sampling of a finite resource. So far, studies investigating such success have predominantly focused on taxa with ranges restricted to temperate or cold environments at northern latitudes, which likely aids DNA preservation. Here, we report remarkably high aDNA sequencing success in Sirenia, herbivorous marine mammals of which the distribution is currently constrained to the global tropics. We investigate 91 samples from 85 specimens comprising all four contemporary species and one extinct species, comparing different sample types (cranial/post-cranial bone, skin and cartilage), species, collections, and material age. We obtained remarkably high (e.g., > 20%) endogenous DNA preservation for the majority (e.g., ~57% percent) of samples. Sequencing success was linked to sample type, with cranial bones (including petrous and tympanic bones) yielding significantly higher endogenous DNA. Additionally, we obtained variable, but potentially superior DNA results for preserved cartilage and hide samples that can be associated with historical bone. Although such tissue is not always present, this type of material is easy to sample, with very limited destructive impacts on the associated bones, and we therefore highlight its untapped potential as a source of DNA. Overall, our results show the high success of ancient DNA retrieval from historical collections of species with a tropical distribution, expanding on the types of specimens that are available for temporal genomic analyses.</p>","PeriodicalId":211,"journal":{"name":"Molecular Ecology Resources","volume":" ","pages":"e70015"},"PeriodicalIF":5.5000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Historical Collections of Tropical Marine Mammals Are an Excellent Resource for Ancient DNA.\",\"authors\":\"Lydia Hildebrand Furness, Richard Sabin, Marianne Strand Torvanger, Oliver Kersten, James H Barrett, Bastiaan Star\",\"doi\":\"10.1111/1755-0998.70015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The ability to predict ancient DNA sequencing success in natural history collections is critical to reducing the amount of destructive sampling of a finite resource. So far, studies investigating such success have predominantly focused on taxa with ranges restricted to temperate or cold environments at northern latitudes, which likely aids DNA preservation. Here, we report remarkably high aDNA sequencing success in Sirenia, herbivorous marine mammals of which the distribution is currently constrained to the global tropics. We investigate 91 samples from 85 specimens comprising all four contemporary species and one extinct species, comparing different sample types (cranial/post-cranial bone, skin and cartilage), species, collections, and material age. We obtained remarkably high (e.g., > 20%) endogenous DNA preservation for the majority (e.g., ~57% percent) of samples. Sequencing success was linked to sample type, with cranial bones (including petrous and tympanic bones) yielding significantly higher endogenous DNA. Additionally, we obtained variable, but potentially superior DNA results for preserved cartilage and hide samples that can be associated with historical bone. Although such tissue is not always present, this type of material is easy to sample, with very limited destructive impacts on the associated bones, and we therefore highlight its untapped potential as a source of DNA. Overall, our results show the high success of ancient DNA retrieval from historical collections of species with a tropical distribution, expanding on the types of specimens that are available for temporal genomic analyses.</p>\",\"PeriodicalId\":211,\"journal\":{\"name\":\"Molecular Ecology Resources\",\"volume\":\" \",\"pages\":\"e70015\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Ecology Resources\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/1755-0998.70015\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology Resources","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/1755-0998.70015","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Historical Collections of Tropical Marine Mammals Are an Excellent Resource for Ancient DNA.
The ability to predict ancient DNA sequencing success in natural history collections is critical to reducing the amount of destructive sampling of a finite resource. So far, studies investigating such success have predominantly focused on taxa with ranges restricted to temperate or cold environments at northern latitudes, which likely aids DNA preservation. Here, we report remarkably high aDNA sequencing success in Sirenia, herbivorous marine mammals of which the distribution is currently constrained to the global tropics. We investigate 91 samples from 85 specimens comprising all four contemporary species and one extinct species, comparing different sample types (cranial/post-cranial bone, skin and cartilage), species, collections, and material age. We obtained remarkably high (e.g., > 20%) endogenous DNA preservation for the majority (e.g., ~57% percent) of samples. Sequencing success was linked to sample type, with cranial bones (including petrous and tympanic bones) yielding significantly higher endogenous DNA. Additionally, we obtained variable, but potentially superior DNA results for preserved cartilage and hide samples that can be associated with historical bone. Although such tissue is not always present, this type of material is easy to sample, with very limited destructive impacts on the associated bones, and we therefore highlight its untapped potential as a source of DNA. Overall, our results show the high success of ancient DNA retrieval from historical collections of species with a tropical distribution, expanding on the types of specimens that are available for temporal genomic analyses.
期刊介绍:
Molecular Ecology Resources promotes the creation of comprehensive resources for the scientific community, encompassing computer programs, statistical and molecular advancements, and a diverse array of molecular tools. Serving as a conduit for disseminating these resources, the journal targets a broad audience of researchers in the fields of evolution, ecology, and conservation. Articles in Molecular Ecology Resources are crafted to support investigations tackling significant questions within these disciplines.
In addition to original resource articles, Molecular Ecology Resources features Reviews, Opinions, and Comments relevant to the field. The journal also periodically releases Special Issues focusing on resource development within specific areas.