作用于Kv7钾通道/转运蛋白受体的新型双机制GRT-X激动剂可预防小鼠和人肌萎缩侧索硬化症/额颞叶痴呆星形细胞条件介质暴露后的运动神经元变性。

IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Vera M Masegosa, Elsa Fritz, Daniela Corvalan, Fabiola Rojas, Polett Garcés, Xavier Navarro, Petra Bloms-Funke, Brigitte van Zundert, Mireia Herrando-Grabulosa
{"title":"作用于Kv7钾通道/转运蛋白受体的新型双机制GRT-X激动剂可预防小鼠和人肌萎缩侧索硬化症/额颞叶痴呆星形细胞条件介质暴露后的运动神经元变性。","authors":"Vera M Masegosa, Elsa Fritz, Daniela Corvalan, Fabiola Rojas, Polett Garcés, Xavier Navarro, Petra Bloms-Funke, Brigitte van Zundert, Mireia Herrando-Grabulosa","doi":"10.1021/acschemneuro.5c00197","DOIUrl":null,"url":null,"abstract":"<p><p>Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) form a continuous spectrum of aggressive neurodegenerative diseases affecting primarily motoneurons (MNs) and cortical frontotemporal neurons. Noncell autonomous mechanisms contribute to ALS/FTD, wherein astrocytes release toxic factor(s) detrimental to MNs. Because of the multifactorial nature of ALS, single-pathway-focused therapies have limited effectiveness in improving ALS. Therefore, novel combinatorial therapies are currently being pursued. Here, we evaluated whether the simultaneous activation of two complementary targets, the voltage-gated potassium channels 7.2/3 (Kv7.2/3) and the mitochondrial translocator protein (TSPO), by a novel synthesized compound (GRT-X) is an effective neuroprotective treatment in ALS in vitro models. We exposed primary rat ventral spinal cord neuronal cultures and rat spinal cord organotypic cultures to astrocyte-conditioned medium derived from primary mouse ALS astrocytes expressing mutant human SOD1 (SOD1<sup>G93A</sup>-ACM) or from human-induced pluripotent stem cell (iPSC)-derived astrocytes carrying an ALS-causing mutation in SOD1 (SOD1<sup>D90A</sup>-ACM) or an ALS/FTD-causing mutation in TDP-43 (TDP43<sup>A90 V</sup>-ACM). We report that the diverse human and mouse ALS/FTD-ACMs compromise the MN viability. Remarkably, GRT-X led to consistent protection of MNs. Moreover, ALS/FTD-ACM increases oxidative stress levels, which are prevented with GRT-X treatment. Together, we show that the complementary activation of TSPO and Kv7.2/3 may offer a novel therapeutic strategy for ALS/FTD due to its capacity to protect MNs from noncell-autonomous toxicity induced by diseased astrocytes.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel Dual Mechanism GRT-X Agonist Acting on Kv7 Potassium Channel/Translocator Protein Receptor Prevents Motoneuron Degeneration Following Exposure to Mouse and Human Amyotrophic Lateral Sclerosis/Frontotemporal Dementia Astrocyte-Conditioned Media.\",\"authors\":\"Vera M Masegosa, Elsa Fritz, Daniela Corvalan, Fabiola Rojas, Polett Garcés, Xavier Navarro, Petra Bloms-Funke, Brigitte van Zundert, Mireia Herrando-Grabulosa\",\"doi\":\"10.1021/acschemneuro.5c00197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) form a continuous spectrum of aggressive neurodegenerative diseases affecting primarily motoneurons (MNs) and cortical frontotemporal neurons. Noncell autonomous mechanisms contribute to ALS/FTD, wherein astrocytes release toxic factor(s) detrimental to MNs. Because of the multifactorial nature of ALS, single-pathway-focused therapies have limited effectiveness in improving ALS. Therefore, novel combinatorial therapies are currently being pursued. Here, we evaluated whether the simultaneous activation of two complementary targets, the voltage-gated potassium channels 7.2/3 (Kv7.2/3) and the mitochondrial translocator protein (TSPO), by a novel synthesized compound (GRT-X) is an effective neuroprotective treatment in ALS in vitro models. We exposed primary rat ventral spinal cord neuronal cultures and rat spinal cord organotypic cultures to astrocyte-conditioned medium derived from primary mouse ALS astrocytes expressing mutant human SOD1 (SOD1<sup>G93A</sup>-ACM) or from human-induced pluripotent stem cell (iPSC)-derived astrocytes carrying an ALS-causing mutation in SOD1 (SOD1<sup>D90A</sup>-ACM) or an ALS/FTD-causing mutation in TDP-43 (TDP43<sup>A90 V</sup>-ACM). We report that the diverse human and mouse ALS/FTD-ACMs compromise the MN viability. Remarkably, GRT-X led to consistent protection of MNs. Moreover, ALS/FTD-ACM increases oxidative stress levels, which are prevented with GRT-X treatment. Together, we show that the complementary activation of TSPO and Kv7.2/3 may offer a novel therapeutic strategy for ALS/FTD due to its capacity to protect MNs from noncell-autonomous toxicity induced by diseased astrocytes.</p>\",\"PeriodicalId\":13,\"journal\":{\"name\":\"ACS Chemical Neuroscience\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acschemneuro.5c00197\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.5c00197","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

肌萎缩侧索硬化症(ALS)和额颞叶痴呆(FTD)形成了一系列侵袭性神经退行性疾病,主要影响运动神经元(MNs)和皮层额颞叶神经元。非细胞自主机制有助于ALS/FTD,其中星形胶质细胞释放有害于MNs的毒性因子。由于ALS的多因子特性,单途径聚焦疗法在改善ALS方面的效果有限。因此,目前正在寻求新的组合疗法。在这里,我们评估了一种新合成的化合物(GRT-X)同时激活两个互补靶点,电压门控钾通道7.2/3 (Kv7.2/3)和线粒体转运蛋白(TSPO)是否能有效地治疗ALS体外模型的神经保护。我们将原代大鼠脊髓腹侧神经元培养物和大鼠脊髓器官型培养物暴露于星形细胞条件培养基中,这些星形细胞来源于表达突变的人SOD1 (SOD1G93A-ACM)的小鼠ALS星形细胞,或来自人诱导的多能干细胞(iPSC)衍生的星形细胞,这些星形细胞携带引起ALS的SOD1突变(SOD1D90A-ACM)或引起ALS/ ftd的TDP-43突变(TDP43A90 V-ACM)。我们报告了不同的人类和小鼠ALS/FTD-ACMs损害MN的生存能力。值得注意的是,GRT-X导致了对MNs的持续保护。此外,ALS/FTD-ACM增加氧化应激水平,而GRT-X治疗可预防氧化应激。总之,我们表明TSPO和Kv7.2/3的互补激活可能为ALS/FTD提供一种新的治疗策略,因为它能够保护MNs免受病变星形胶质细胞诱导的非细胞自主毒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel Dual Mechanism GRT-X Agonist Acting on Kv7 Potassium Channel/Translocator Protein Receptor Prevents Motoneuron Degeneration Following Exposure to Mouse and Human Amyotrophic Lateral Sclerosis/Frontotemporal Dementia Astrocyte-Conditioned Media.

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) form a continuous spectrum of aggressive neurodegenerative diseases affecting primarily motoneurons (MNs) and cortical frontotemporal neurons. Noncell autonomous mechanisms contribute to ALS/FTD, wherein astrocytes release toxic factor(s) detrimental to MNs. Because of the multifactorial nature of ALS, single-pathway-focused therapies have limited effectiveness in improving ALS. Therefore, novel combinatorial therapies are currently being pursued. Here, we evaluated whether the simultaneous activation of two complementary targets, the voltage-gated potassium channels 7.2/3 (Kv7.2/3) and the mitochondrial translocator protein (TSPO), by a novel synthesized compound (GRT-X) is an effective neuroprotective treatment in ALS in vitro models. We exposed primary rat ventral spinal cord neuronal cultures and rat spinal cord organotypic cultures to astrocyte-conditioned medium derived from primary mouse ALS astrocytes expressing mutant human SOD1 (SOD1G93A-ACM) or from human-induced pluripotent stem cell (iPSC)-derived astrocytes carrying an ALS-causing mutation in SOD1 (SOD1D90A-ACM) or an ALS/FTD-causing mutation in TDP-43 (TDP43A90 V-ACM). We report that the diverse human and mouse ALS/FTD-ACMs compromise the MN viability. Remarkably, GRT-X led to consistent protection of MNs. Moreover, ALS/FTD-ACM increases oxidative stress levels, which are prevented with GRT-X treatment. Together, we show that the complementary activation of TSPO and Kv7.2/3 may offer a novel therapeutic strategy for ALS/FTD due to its capacity to protect MNs from noncell-autonomous toxicity induced by diseased astrocytes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Chemical Neuroscience
ACS Chemical Neuroscience BIOCHEMISTRY & MOLECULAR BIOLOGY-CHEMISTRY, MEDICINAL
CiteScore
9.20
自引率
4.00%
发文量
323
审稿时长
1 months
期刊介绍: ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following: Neurotransmitters and receptors Neuropharmaceuticals and therapeutics Neural development—Plasticity, and degeneration Chemical, physical, and computational methods in neuroscience Neuronal diseases—basis, detection, and treatment Mechanism of aging, learning, memory and behavior Pain and sensory processing Neurotoxins Neuroscience-inspired bioengineering Development of methods in chemical neurobiology Neuroimaging agents and technologies Animal models for central nervous system diseases Behavioral research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信