Md. Rezaul Islam, Abdur Rauf, Sumiya Akter, Happy Akter, Md. Ibrahim Khalil Al-Imran, Md. Naeem Hossain Fakir, Gazi Kaifeara Thufa, Md. Tazul Islam, Hassan A. Hemeg, Waleed Al Abdulmonem, Abdullah S. M. Aljohani, Marcello Iriti
{"title":"姜黄素在神经退行性疾病中的神经保护潜力:细胞和分子信号通路的临床见解","authors":"Md. Rezaul Islam, Abdur Rauf, Sumiya Akter, Happy Akter, Md. Ibrahim Khalil Al-Imran, Md. Naeem Hossain Fakir, Gazi Kaifeara Thufa, Md. Tazul Islam, Hassan A. Hemeg, Waleed Al Abdulmonem, Abdullah S. M. Aljohani, Marcello Iriti","doi":"10.1002/jbt.70369","DOIUrl":null,"url":null,"abstract":"<p>Progressive neuronal loss and dysfunction characterize neurodegenerative diseases (NDs) such as Alzheimer's, Parkinson's, and Huntington's diseases, spinal cord injury, and stroke, making them difficult to treat. Curcumin, a bioactive substance derived from the turmeric plant (<i>Curcuma longa</i>), is interesting due to its potential neuroprotective properties. This review thoroughly shows the cellular and molecular signaling mechanisms that curcumin utilizes to provide neuroprotective effects in NDs. Curcumin regulates several signaling pathways linked to neuroprotection, such as those that reduce oxidative stress, prevent Aβ formation, and decrease neuroinflammation. NF-κB suppression reduces inflammatory responses, while Nrf2 activation boosts antioxidant response element expression. Furthermore, curcumin enhances autophagy and neurotrophic factor expression, facilitating the removal of harmful protein aggregates. The function of curcumin as a metal chelator is emphasized particularly to iron and other metal dysregulations linked to neurodegenerative processes. Curcumin's capacity to regulate metal ion homeostasis is essential since the pathophysiology of NDs is significantly influenced by metal-induced oxidative stress and toxic buildup. It shows potential therapeutic effects by reducing oxidative damage and chelating excess metals. Clinical research indicates that curcumin can penetrate the blood-brain barrier, making it an effective treatment option. The regulation of these pathways reduces neuronal damage and improves neurons' survival and functionality. In addition, curcumin's anti-inflammatory properties and low toxicity make it a promising long-term treatment option for NDs. Therefore, this review emphasizes the potential of curcumin as a targeted neuroprotective compound, presenting recent clinical insights and experimental data. Future studies should optimize curcumin formulations and delivery systems to enhance its bioavailability and therapeutic efficacy.</p>","PeriodicalId":15151,"journal":{"name":"Journal of Biochemical and Molecular Toxicology","volume":"39 8","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbt.70369","citationCount":"0","resultStr":"{\"title\":\"Neuroprotective Potential of Curcumin in Neurodegenerative Diseases: Clinical Insights Into Cellular and Molecular Signaling Pathways\",\"authors\":\"Md. Rezaul Islam, Abdur Rauf, Sumiya Akter, Happy Akter, Md. Ibrahim Khalil Al-Imran, Md. Naeem Hossain Fakir, Gazi Kaifeara Thufa, Md. Tazul Islam, Hassan A. Hemeg, Waleed Al Abdulmonem, Abdullah S. M. Aljohani, Marcello Iriti\",\"doi\":\"10.1002/jbt.70369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Progressive neuronal loss and dysfunction characterize neurodegenerative diseases (NDs) such as Alzheimer's, Parkinson's, and Huntington's diseases, spinal cord injury, and stroke, making them difficult to treat. Curcumin, a bioactive substance derived from the turmeric plant (<i>Curcuma longa</i>), is interesting due to its potential neuroprotective properties. This review thoroughly shows the cellular and molecular signaling mechanisms that curcumin utilizes to provide neuroprotective effects in NDs. Curcumin regulates several signaling pathways linked to neuroprotection, such as those that reduce oxidative stress, prevent Aβ formation, and decrease neuroinflammation. NF-κB suppression reduces inflammatory responses, while Nrf2 activation boosts antioxidant response element expression. Furthermore, curcumin enhances autophagy and neurotrophic factor expression, facilitating the removal of harmful protein aggregates. The function of curcumin as a metal chelator is emphasized particularly to iron and other metal dysregulations linked to neurodegenerative processes. Curcumin's capacity to regulate metal ion homeostasis is essential since the pathophysiology of NDs is significantly influenced by metal-induced oxidative stress and toxic buildup. It shows potential therapeutic effects by reducing oxidative damage and chelating excess metals. Clinical research indicates that curcumin can penetrate the blood-brain barrier, making it an effective treatment option. The regulation of these pathways reduces neuronal damage and improves neurons' survival and functionality. In addition, curcumin's anti-inflammatory properties and low toxicity make it a promising long-term treatment option for NDs. Therefore, this review emphasizes the potential of curcumin as a targeted neuroprotective compound, presenting recent clinical insights and experimental data. Future studies should optimize curcumin formulations and delivery systems to enhance its bioavailability and therapeutic efficacy.</p>\",\"PeriodicalId\":15151,\"journal\":{\"name\":\"Journal of Biochemical and Molecular Toxicology\",\"volume\":\"39 8\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbt.70369\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biochemical and Molecular Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70369\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biochemical and Molecular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70369","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Neuroprotective Potential of Curcumin in Neurodegenerative Diseases: Clinical Insights Into Cellular and Molecular Signaling Pathways
Progressive neuronal loss and dysfunction characterize neurodegenerative diseases (NDs) such as Alzheimer's, Parkinson's, and Huntington's diseases, spinal cord injury, and stroke, making them difficult to treat. Curcumin, a bioactive substance derived from the turmeric plant (Curcuma longa), is interesting due to its potential neuroprotective properties. This review thoroughly shows the cellular and molecular signaling mechanisms that curcumin utilizes to provide neuroprotective effects in NDs. Curcumin regulates several signaling pathways linked to neuroprotection, such as those that reduce oxidative stress, prevent Aβ formation, and decrease neuroinflammation. NF-κB suppression reduces inflammatory responses, while Nrf2 activation boosts antioxidant response element expression. Furthermore, curcumin enhances autophagy and neurotrophic factor expression, facilitating the removal of harmful protein aggregates. The function of curcumin as a metal chelator is emphasized particularly to iron and other metal dysregulations linked to neurodegenerative processes. Curcumin's capacity to regulate metal ion homeostasis is essential since the pathophysiology of NDs is significantly influenced by metal-induced oxidative stress and toxic buildup. It shows potential therapeutic effects by reducing oxidative damage and chelating excess metals. Clinical research indicates that curcumin can penetrate the blood-brain barrier, making it an effective treatment option. The regulation of these pathways reduces neuronal damage and improves neurons' survival and functionality. In addition, curcumin's anti-inflammatory properties and low toxicity make it a promising long-term treatment option for NDs. Therefore, this review emphasizes the potential of curcumin as a targeted neuroprotective compound, presenting recent clinical insights and experimental data. Future studies should optimize curcumin formulations and delivery systems to enhance its bioavailability and therapeutic efficacy.
期刊介绍:
The Journal of Biochemical and Molecular Toxicology is an international journal that contains original research papers, rapid communications, mini-reviews, and book reviews, all focusing on the molecular mechanisms of action and detoxication of exogenous and endogenous chemicals and toxic agents. The scope includes effects on the organism at all stages of development, on organ systems, tissues, and cells as well as on enzymes, receptors, hormones, and genes. The biochemical and molecular aspects of uptake, transport, storage, excretion, lactivation and detoxication of drugs, agricultural, industrial and environmental chemicals, natural products and food additives are all subjects suitable for publication. Of particular interest are aspects of molecular biology related to biochemical toxicology. These include studies of the expression of genes related to detoxication and activation enzymes, toxicants with modes of action involving effects on nucleic acids, gene expression and protein synthesis, and the toxicity of products derived from biotechnology.