基于雾计算的高清体育视频直播框架传输与优化

IF 0.5 Q4 TELECOMMUNICATIONS
Long Xu
{"title":"基于雾计算的高清体育视频直播框架传输与优化","authors":"Long Xu","doi":"10.1002/itl2.70094","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The escalating global requirement for immersive live sports broadcasting systems capable of delivering ultra-high-definition video streams, multi-angle viewing options, and instantaneous audience engagement has revealed inherent scalability challenges in conventional cloud-dependent transmission infrastructures. Existing frameworks demonstrate critical performance degradation. However, by distributing loads to different regions near users, fog computing has promoted a new paradigm toward high-quality live transmission. In this way, this paper introduces a fog computing-driven framework that integrates distributed edge resources with machine learning-enhanced encoding and transmissions. First, we design a hierarchical fog computing-based architecture that offloads computational tasks from centralized clouds to fog nodes, greatly reducing end-to-end latency while maintaining 4K HDR quality. Second, we propose the spatiotemporal content encoder adaptation that dynamically adjusts resolution and frame rate based on region-of-interest saliency. Lastly, we introduce the federated caching with proactive prefetching, which leverages federated learning to predict and cache popular content across fog nodes. Experimental results demonstrate superior performance over the state-of-the-art comparison methods in different scenarios in terms of video quality, latency, and cache hit rate.</p>\n </div>","PeriodicalId":100725,"journal":{"name":"Internet Technology Letters","volume":"8 5","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fog Computing-Based Live Streaming Framework for High-Definition Sports Video Transmission and Optimization\",\"authors\":\"Long Xu\",\"doi\":\"10.1002/itl2.70094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The escalating global requirement for immersive live sports broadcasting systems capable of delivering ultra-high-definition video streams, multi-angle viewing options, and instantaneous audience engagement has revealed inherent scalability challenges in conventional cloud-dependent transmission infrastructures. Existing frameworks demonstrate critical performance degradation. However, by distributing loads to different regions near users, fog computing has promoted a new paradigm toward high-quality live transmission. In this way, this paper introduces a fog computing-driven framework that integrates distributed edge resources with machine learning-enhanced encoding and transmissions. First, we design a hierarchical fog computing-based architecture that offloads computational tasks from centralized clouds to fog nodes, greatly reducing end-to-end latency while maintaining 4K HDR quality. Second, we propose the spatiotemporal content encoder adaptation that dynamically adjusts resolution and frame rate based on region-of-interest saliency. Lastly, we introduce the federated caching with proactive prefetching, which leverages federated learning to predict and cache popular content across fog nodes. Experimental results demonstrate superior performance over the state-of-the-art comparison methods in different scenarios in terms of video quality, latency, and cache hit rate.</p>\\n </div>\",\"PeriodicalId\":100725,\"journal\":{\"name\":\"Internet Technology Letters\",\"volume\":\"8 5\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet Technology Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/itl2.70094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/itl2.70094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

全球对能够提供超高清视频流、多角度观看选项和即时观众参与的沉浸式体育直播系统的需求不断升级,这揭示了传统依赖云的传输基础设施固有的可扩展性挑战。现有框架表现出严重的性能下降。然而,通过将负载分配到用户附近的不同区域,雾计算促进了高质量实时传输的新范式。通过这种方式,本文引入了一个雾计算驱动的框架,该框架将分布式边缘资源与机器学习增强的编码和传输相结合。首先,我们设计了一个基于分层雾计算的架构,将计算任务从集中式云转移到雾节点,在保持4K HDR质量的同时大大减少了端到端延迟。其次,提出了基于感兴趣区域显著性动态调整分辨率和帧率的时空内容编码器自适应算法。最后,我们介绍了带有主动预取的联邦缓存,它利用联邦学习来预测和缓存雾节点之间的流行内容。实验结果表明,在不同场景下,该方法在视频质量、延迟和缓存命中率方面都优于最先进的比较方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fog Computing-Based Live Streaming Framework for High-Definition Sports Video Transmission and Optimization

The escalating global requirement for immersive live sports broadcasting systems capable of delivering ultra-high-definition video streams, multi-angle viewing options, and instantaneous audience engagement has revealed inherent scalability challenges in conventional cloud-dependent transmission infrastructures. Existing frameworks demonstrate critical performance degradation. However, by distributing loads to different regions near users, fog computing has promoted a new paradigm toward high-quality live transmission. In this way, this paper introduces a fog computing-driven framework that integrates distributed edge resources with machine learning-enhanced encoding and transmissions. First, we design a hierarchical fog computing-based architecture that offloads computational tasks from centralized clouds to fog nodes, greatly reducing end-to-end latency while maintaining 4K HDR quality. Second, we propose the spatiotemporal content encoder adaptation that dynamically adjusts resolution and frame rate based on region-of-interest saliency. Lastly, we introduce the federated caching with proactive prefetching, which leverages federated learning to predict and cache popular content across fog nodes. Experimental results demonstrate superior performance over the state-of-the-art comparison methods in different scenarios in terms of video quality, latency, and cache hit rate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信