Chen Zhou, Yifan Wang, Yuanyuan Li, Weitao Zhang, Yunmeng Bai
{"title":"不同治疗方法形成的结直肠癌免疫微环境的特征和评价","authors":"Chen Zhou, Yifan Wang, Yuanyuan Li, Weitao Zhang, Yunmeng Bai","doi":"10.1049/syb2.70028","DOIUrl":null,"url":null,"abstract":"<p>Colorectal cancer (CRC) occurs as the third most common cancer with high mortality across the world. Understanding the intratumoral immune cell heterogeneity and their responses to various therapies is crucial for enhancing patient outcomes. This study aimed to characterise and evaluate the immune microenvironment landscapes of CRC shaped by different therapies including CD73 inhibitor, PD-1 blockade and photothermal therapy (PTT). Our investigation revealed that three therapies could commonly modulate the down-regulation of Treg, M2 macrophage and <i>Ptprj</i>+ G4 granulocyte, up-regulation of effector/memory T cell, M1 macorphage and <i>Hilpda</i>+ G1 granulocyte. Moreover, we identified the uniquely dis-regulated cell types and pathway activities response to each therapy, such as CD73 inhibitor enriched more Cd8+ memory and central memory (CM) cell, PD-1 blockade with more Cd8+ CTL and <i>Cxcl3</i>+ G2 granulocyte, and PTT with more Cd8+ effector memory and <i>Rethlg</i>+ G3 granulocyte cell. These responses disordered the glycolysis, angiogenesis, phagocytosis functions and cellular communication to reshape the CRC tumour immune microenvironment. We provide the detail insights into the intratumoral immunomodulation preferences of CRC mice treated with CD73 inhibitor, PD-1 blockade and PTT therapies, which might contribute to the ongoing development of more effective anticancer strategies.</p>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":"19 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/syb2.70028","citationCount":"0","resultStr":"{\"title\":\"Characterising and Evaluating the Immune Microenvironment Landscapes of Colorectal Cancer Shaped by Different Therapies\",\"authors\":\"Chen Zhou, Yifan Wang, Yuanyuan Li, Weitao Zhang, Yunmeng Bai\",\"doi\":\"10.1049/syb2.70028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Colorectal cancer (CRC) occurs as the third most common cancer with high mortality across the world. Understanding the intratumoral immune cell heterogeneity and their responses to various therapies is crucial for enhancing patient outcomes. This study aimed to characterise and evaluate the immune microenvironment landscapes of CRC shaped by different therapies including CD73 inhibitor, PD-1 blockade and photothermal therapy (PTT). Our investigation revealed that three therapies could commonly modulate the down-regulation of Treg, M2 macrophage and <i>Ptprj</i>+ G4 granulocyte, up-regulation of effector/memory T cell, M1 macorphage and <i>Hilpda</i>+ G1 granulocyte. Moreover, we identified the uniquely dis-regulated cell types and pathway activities response to each therapy, such as CD73 inhibitor enriched more Cd8+ memory and central memory (CM) cell, PD-1 blockade with more Cd8+ CTL and <i>Cxcl3</i>+ G2 granulocyte, and PTT with more Cd8+ effector memory and <i>Rethlg</i>+ G3 granulocyte cell. These responses disordered the glycolysis, angiogenesis, phagocytosis functions and cellular communication to reshape the CRC tumour immune microenvironment. We provide the detail insights into the intratumoral immunomodulation preferences of CRC mice treated with CD73 inhibitor, PD-1 blockade and PTT therapies, which might contribute to the ongoing development of more effective anticancer strategies.</p>\",\"PeriodicalId\":50379,\"journal\":{\"name\":\"IET Systems Biology\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/syb2.70028\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Systems Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/syb2.70028\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/syb2.70028","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Characterising and Evaluating the Immune Microenvironment Landscapes of Colorectal Cancer Shaped by Different Therapies
Colorectal cancer (CRC) occurs as the third most common cancer with high mortality across the world. Understanding the intratumoral immune cell heterogeneity and their responses to various therapies is crucial for enhancing patient outcomes. This study aimed to characterise and evaluate the immune microenvironment landscapes of CRC shaped by different therapies including CD73 inhibitor, PD-1 blockade and photothermal therapy (PTT). Our investigation revealed that three therapies could commonly modulate the down-regulation of Treg, M2 macrophage and Ptprj+ G4 granulocyte, up-regulation of effector/memory T cell, M1 macorphage and Hilpda+ G1 granulocyte. Moreover, we identified the uniquely dis-regulated cell types and pathway activities response to each therapy, such as CD73 inhibitor enriched more Cd8+ memory and central memory (CM) cell, PD-1 blockade with more Cd8+ CTL and Cxcl3+ G2 granulocyte, and PTT with more Cd8+ effector memory and Rethlg+ G3 granulocyte cell. These responses disordered the glycolysis, angiogenesis, phagocytosis functions and cellular communication to reshape the CRC tumour immune microenvironment. We provide the detail insights into the intratumoral immunomodulation preferences of CRC mice treated with CD73 inhibitor, PD-1 blockade and PTT therapies, which might contribute to the ongoing development of more effective anticancer strategies.
期刊介绍:
IET Systems Biology covers intra- and inter-cellular dynamics, using systems- and signal-oriented approaches. Papers that analyse genomic data in order to identify variables and basic relationships between them are considered if the results provide a basis for mathematical modelling and simulation of cellular dynamics. Manuscripts on molecular and cell biological studies are encouraged if the aim is a systems approach to dynamic interactions within and between cells.
The scope includes the following topics:
Genomics, transcriptomics, proteomics, metabolomics, cells, tissue and the physiome; molecular and cellular interaction, gene, cell and protein function; networks and pathways; metabolism and cell signalling; dynamics, regulation and control; systems, signals, and information; experimental data analysis; mathematical modelling, simulation and theoretical analysis; biological modelling, simulation, prediction and control; methodologies, databases, tools and algorithms for modelling and simulation; modelling, analysis and control of biological networks; synthetic biology and bioengineering based on systems biology.