{"title":"基于数据驱动的移民空间互动模型:整合和完善竞争目的地和干预机会理论","authors":"Mengyu Liao, Taylor M. Oshan","doi":"10.1111/gean.70001","DOIUrl":null,"url":null,"abstract":"<p>Traditional spatial interaction (SI) models of migration are susceptible to misspecification when the spatial structure of locations is not properly incorporated. To address this, a novel SI model for migration is introduced that integrates the theories of competing destinations (CD) and intervening opportunities (IO) to capture multiscale spatial structure using the recent generalized additive spatial smoothing (GASS) framework. This GASS CDIO model can identify the appropriate spatial scales to represent the spatial structure of origins and destinations in a data-driven manner. Validation of the model was conducted through two simulation experiments. The first demonstrates that employing the incorrect scale to capture spatial structure in SI models biases the parameter estimates and increases uncertainty. The second demonstrates that the GASS approach reliably recovers accurate parameters by identifying optimal hyperparameters associated with multiple spatial scales. The GASS CDIO model was then applied to U.S. inter-county migration data and compared to several other model specifications. The results reveal the unique spatial structure from the perspective of origins and destinations and illustrate the improved recoverability of anticipated migration relationships. This work suggests that the GASS CDIO model better integrates spatial theories of migration and accounts for the multiscale nature of SI processes.</p>","PeriodicalId":12533,"journal":{"name":"Geographical Analysis","volume":"57 3","pages":"540-554"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gean.70001","citationCount":"0","resultStr":"{\"title\":\"A Data-Driven Approach to Spatial Interaction Models of Migration: Integrating and Refining the Theories of Competing Destinations and Intervening Opportunities\",\"authors\":\"Mengyu Liao, Taylor M. Oshan\",\"doi\":\"10.1111/gean.70001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Traditional spatial interaction (SI) models of migration are susceptible to misspecification when the spatial structure of locations is not properly incorporated. To address this, a novel SI model for migration is introduced that integrates the theories of competing destinations (CD) and intervening opportunities (IO) to capture multiscale spatial structure using the recent generalized additive spatial smoothing (GASS) framework. This GASS CDIO model can identify the appropriate spatial scales to represent the spatial structure of origins and destinations in a data-driven manner. Validation of the model was conducted through two simulation experiments. The first demonstrates that employing the incorrect scale to capture spatial structure in SI models biases the parameter estimates and increases uncertainty. The second demonstrates that the GASS approach reliably recovers accurate parameters by identifying optimal hyperparameters associated with multiple spatial scales. The GASS CDIO model was then applied to U.S. inter-county migration data and compared to several other model specifications. The results reveal the unique spatial structure from the perspective of origins and destinations and illustrate the improved recoverability of anticipated migration relationships. This work suggests that the GASS CDIO model better integrates spatial theories of migration and accounts for the multiscale nature of SI processes.</p>\",\"PeriodicalId\":12533,\"journal\":{\"name\":\"Geographical Analysis\",\"volume\":\"57 3\",\"pages\":\"540-554\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gean.70001\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geographical Analysis\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gean.70001\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geographical Analysis","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gean.70001","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY","Score":null,"Total":0}
A Data-Driven Approach to Spatial Interaction Models of Migration: Integrating and Refining the Theories of Competing Destinations and Intervening Opportunities
Traditional spatial interaction (SI) models of migration are susceptible to misspecification when the spatial structure of locations is not properly incorporated. To address this, a novel SI model for migration is introduced that integrates the theories of competing destinations (CD) and intervening opportunities (IO) to capture multiscale spatial structure using the recent generalized additive spatial smoothing (GASS) framework. This GASS CDIO model can identify the appropriate spatial scales to represent the spatial structure of origins and destinations in a data-driven manner. Validation of the model was conducted through two simulation experiments. The first demonstrates that employing the incorrect scale to capture spatial structure in SI models biases the parameter estimates and increases uncertainty. The second demonstrates that the GASS approach reliably recovers accurate parameters by identifying optimal hyperparameters associated with multiple spatial scales. The GASS CDIO model was then applied to U.S. inter-county migration data and compared to several other model specifications. The results reveal the unique spatial structure from the perspective of origins and destinations and illustrate the improved recoverability of anticipated migration relationships. This work suggests that the GASS CDIO model better integrates spatial theories of migration and accounts for the multiscale nature of SI processes.
期刊介绍:
First in its specialty area and one of the most frequently cited publications in geography, Geographical Analysis has, since 1969, presented significant advances in geographical theory, model building, and quantitative methods to geographers and scholars in a wide spectrum of related fields. Traditionally, mathematical and nonmathematical articulations of geographical theory, and statements and discussions of the analytic paradigm are published in the journal. Spatial data analyses and spatial econometrics and statistics are strongly represented.