Adrian C. Rublein;Fidan Mehmeti;Mark Mahon;Thomas F. La Porta
{"title":"边缘计算系统中基于抢占的任务分配和资源分配改进方法","authors":"Adrian C. Rublein;Fidan Mehmeti;Mark Mahon;Thomas F. La Porta","doi":"10.1109/TPDS.2025.3583966","DOIUrl":null,"url":null,"abstract":"Edge computing has become a very popular service that enables mobile devices to run complex tasks with the help of network-based computing resources. However, edge clouds are often resource-constrained, which makes resource allocation a challenging issue. In addition, edge cloud servers must make allocation decisions with only limited information available, since the arrival of future client tasks might be impossible to predict, and the states and behavior of neighboring servers might be obscured. We focus on a distributed resource allocation method in which servers operate independently and do not communicate with each other, but interact with clients (tasks) to make allocation decisions. We follow a two-round bidding approach to assign tasks to edge cloud servers, and servers are allowed to preempt previous tasks to allocate more useful ones. We evaluate the performance of our system using realistic simulations and real-world trace data from a high-performance computing cluster. Results show that our heuristic improves system-wide performance by 20-25% over previous work when accounting for the time taken by each approach. In this way, an ideal trade-off between performance and speed is achieved.","PeriodicalId":13257,"journal":{"name":"IEEE Transactions on Parallel and Distributed Systems","volume":"36 9","pages":"1857-1871"},"PeriodicalIF":6.0000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Methods of Task Assignment and Resource Allocation With Preemption in Edge Computing Systems\",\"authors\":\"Adrian C. Rublein;Fidan Mehmeti;Mark Mahon;Thomas F. La Porta\",\"doi\":\"10.1109/TPDS.2025.3583966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Edge computing has become a very popular service that enables mobile devices to run complex tasks with the help of network-based computing resources. However, edge clouds are often resource-constrained, which makes resource allocation a challenging issue. In addition, edge cloud servers must make allocation decisions with only limited information available, since the arrival of future client tasks might be impossible to predict, and the states and behavior of neighboring servers might be obscured. We focus on a distributed resource allocation method in which servers operate independently and do not communicate with each other, but interact with clients (tasks) to make allocation decisions. We follow a two-round bidding approach to assign tasks to edge cloud servers, and servers are allowed to preempt previous tasks to allocate more useful ones. We evaluate the performance of our system using realistic simulations and real-world trace data from a high-performance computing cluster. Results show that our heuristic improves system-wide performance by 20-25% over previous work when accounting for the time taken by each approach. In this way, an ideal trade-off between performance and speed is achieved.\",\"PeriodicalId\":13257,\"journal\":{\"name\":\"IEEE Transactions on Parallel and Distributed Systems\",\"volume\":\"36 9\",\"pages\":\"1857-1871\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Parallel and Distributed Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11059363/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parallel and Distributed Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11059363/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Improved Methods of Task Assignment and Resource Allocation With Preemption in Edge Computing Systems
Edge computing has become a very popular service that enables mobile devices to run complex tasks with the help of network-based computing resources. However, edge clouds are often resource-constrained, which makes resource allocation a challenging issue. In addition, edge cloud servers must make allocation decisions with only limited information available, since the arrival of future client tasks might be impossible to predict, and the states and behavior of neighboring servers might be obscured. We focus on a distributed resource allocation method in which servers operate independently and do not communicate with each other, but interact with clients (tasks) to make allocation decisions. We follow a two-round bidding approach to assign tasks to edge cloud servers, and servers are allowed to preempt previous tasks to allocate more useful ones. We evaluate the performance of our system using realistic simulations and real-world trace data from a high-performance computing cluster. Results show that our heuristic improves system-wide performance by 20-25% over previous work when accounting for the time taken by each approach. In this way, an ideal trade-off between performance and speed is achieved.
期刊介绍:
IEEE Transactions on Parallel and Distributed Systems (TPDS) is published monthly. It publishes a range of papers, comments on previously published papers, and survey articles that deal with the parallel and distributed systems research areas of current importance to our readers. Particular areas of interest include, but are not limited to:
a) Parallel and distributed algorithms, focusing on topics such as: models of computation; numerical, combinatorial, and data-intensive parallel algorithms, scalability of algorithms and data structures for parallel and distributed systems, communication and synchronization protocols, network algorithms, scheduling, and load balancing.
b) Applications of parallel and distributed computing, including computational and data-enabled science and engineering, big data applications, parallel crowd sourcing, large-scale social network analysis, management of big data, cloud and grid computing, scientific and biomedical applications, mobile computing, and cyber-physical systems.
c) Parallel and distributed architectures, including architectures for instruction-level and thread-level parallelism; design, analysis, implementation, fault resilience and performance measurements of multiple-processor systems; multicore processors, heterogeneous many-core systems; petascale and exascale systems designs; novel big data architectures; special purpose architectures, including graphics processors, signal processors, network processors, media accelerators, and other special purpose processors and accelerators; impact of technology on architecture; network and interconnect architectures; parallel I/O and storage systems; architecture of the memory hierarchy; power-efficient and green computing architectures; dependable architectures; and performance modeling and evaluation.
d) Parallel and distributed software, including parallel and multicore programming languages and compilers, runtime systems, operating systems, Internet computing and web services, resource management including green computing, middleware for grids, clouds, and data centers, libraries, performance modeling and evaluation, parallel programming paradigms, and programming environments and tools.