DF-RL:云资源管理的动态模糊神经强化学习框架

Chunmao Jiang;Xinyu Lin
{"title":"DF-RL:云资源管理的动态模糊神经强化学习框架","authors":"Chunmao Jiang;Xinyu Lin","doi":"10.23919/JCIN.2025.11083697","DOIUrl":null,"url":null,"abstract":"This paper presents a dynamic fuzzy-neuro reinforcement learning (DF-RL) framework designed for resilient cloud resource management. By integrating the complementary strengths of fuzzy logic, neural networks, and hierarchical reinforcement learning, the proposed framework effectively addresses the uncertainties and dynamic conditions prevalent in cloud computing environments. Specifically, DF-RL utilizes an adaptive neuro-fuzzy inference system (ANFIS) to dynamically fine-tune fuzzy rules, while decision-making is performed through a hierarchical deep Q-network (HDQN) structure. Experimental evaluations demonstrate that DF-RL substantially outperforms existing approaches in resource utilization efficiency, task completion speed, and overall quality of service (QoS). Furthermore, the framework exhibits robust adaptability to workload fluctuations, highlighting its significant potential to manage the complexities and dynamic challenges inherent in contemporary cloud computing scenarios.","PeriodicalId":100766,"journal":{"name":"Journal of Communications and Information Networks","volume":"10 2","pages":"163-173"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DF-RL: A Dynamic Fuzzy-Neuro Reinforcement Learning Framework for Cloud Resource Management\",\"authors\":\"Chunmao Jiang;Xinyu Lin\",\"doi\":\"10.23919/JCIN.2025.11083697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a dynamic fuzzy-neuro reinforcement learning (DF-RL) framework designed for resilient cloud resource management. By integrating the complementary strengths of fuzzy logic, neural networks, and hierarchical reinforcement learning, the proposed framework effectively addresses the uncertainties and dynamic conditions prevalent in cloud computing environments. Specifically, DF-RL utilizes an adaptive neuro-fuzzy inference system (ANFIS) to dynamically fine-tune fuzzy rules, while decision-making is performed through a hierarchical deep Q-network (HDQN) structure. Experimental evaluations demonstrate that DF-RL substantially outperforms existing approaches in resource utilization efficiency, task completion speed, and overall quality of service (QoS). Furthermore, the framework exhibits robust adaptability to workload fluctuations, highlighting its significant potential to manage the complexities and dynamic challenges inherent in contemporary cloud computing scenarios.\",\"PeriodicalId\":100766,\"journal\":{\"name\":\"Journal of Communications and Information Networks\",\"volume\":\"10 2\",\"pages\":\"163-173\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Communications and Information Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11083697/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Communications and Information Networks","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11083697/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种用于弹性云资源管理的动态模糊神经强化学习(DF-RL)框架。通过整合模糊逻辑、神经网络和分层强化学习的互补优势,所提出的框架有效地解决了云计算环境中普遍存在的不确定性和动态条件。具体而言,DF-RL利用自适应神经模糊推理系统(ANFIS)对模糊规则进行动态微调,同时通过分层深度q -网络(HDQN)结构进行决策。实验评估表明,DF-RL在资源利用效率、任务完成速度和整体服务质量(QoS)方面大大优于现有方法。此外,该框架显示出对工作负载波动的强大适应性,突出了其在管理当代云计算情景中固有的复杂性和动态挑战方面的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DF-RL: A Dynamic Fuzzy-Neuro Reinforcement Learning Framework for Cloud Resource Management
This paper presents a dynamic fuzzy-neuro reinforcement learning (DF-RL) framework designed for resilient cloud resource management. By integrating the complementary strengths of fuzzy logic, neural networks, and hierarchical reinforcement learning, the proposed framework effectively addresses the uncertainties and dynamic conditions prevalent in cloud computing environments. Specifically, DF-RL utilizes an adaptive neuro-fuzzy inference system (ANFIS) to dynamically fine-tune fuzzy rules, while decision-making is performed through a hierarchical deep Q-network (HDQN) structure. Experimental evaluations demonstrate that DF-RL substantially outperforms existing approaches in resource utilization efficiency, task completion speed, and overall quality of service (QoS). Furthermore, the framework exhibits robust adaptability to workload fluctuations, highlighting its significant potential to manage the complexities and dynamic challenges inherent in contemporary cloud computing scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信