Kaifeng Peng;Beibei Si;Weiguo Jiang;Meihong Ma;Xuejun Wang
{"title":"基于Sentinel-Derived数据集的2016 - 2023年中国河流年动态研究","authors":"Kaifeng Peng;Beibei Si;Weiguo Jiang;Meihong Ma;Xuejun Wang","doi":"10.1109/JSTARS.2025.3584770","DOIUrl":null,"url":null,"abstract":"Rivers play import roles in ecological biodiversity, shipping trade, and carbon cycle. In our study, we developed an effective, robust, and accurate algorithm for national-scale river mapping, and produced the annual China river extent dataset (CRED) from 2016 to 2023. We assessed the reliability of the CRED based on test samples and data intercomparison. The results indicated that the overall accuracies of the CRED were greater than 88.4% from 2016 to 2023. The rivers of the CRED from 2017 to 2023 achieved good accuracy, with the user accuracies, producer accuracies and F1-score of rivers exceeding 80.4%, 85.0%, and 83.7%, respectively. In 2016, rivers of the CRED achieved medium accuracy, with F1-score of 78.4%. A further data comparison indicated that our CRED had good consistency with existing river-related datasets, with correlation coefficient (R) greater than 0.75. The area statistics indicated that the river area in China were 44948.78 km<sup>2</sup> in 2023. From 2016 to 2023, the river areas were characterized by an initial increase, followed by a decrease, and then a slight increase. Spatially, the decreased rivers were located mainly in Southeast China, whereas the increased rivers were distributed mainly in Central China and Northeast China. In general, the CRED explicitly delineated river extents and dynamics in China, which could provide a good foundation for improving river ecology and management.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"18 ","pages":"16694-16706"},"PeriodicalIF":5.3000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11061783","citationCount":"0","resultStr":"{\"title\":\"Exploring the Annual Dynamics of China’s Rivers From 2016 to 2023 Based on Sentinel-Derived Datasets\",\"authors\":\"Kaifeng Peng;Beibei Si;Weiguo Jiang;Meihong Ma;Xuejun Wang\",\"doi\":\"10.1109/JSTARS.2025.3584770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rivers play import roles in ecological biodiversity, shipping trade, and carbon cycle. In our study, we developed an effective, robust, and accurate algorithm for national-scale river mapping, and produced the annual China river extent dataset (CRED) from 2016 to 2023. We assessed the reliability of the CRED based on test samples and data intercomparison. The results indicated that the overall accuracies of the CRED were greater than 88.4% from 2016 to 2023. The rivers of the CRED from 2017 to 2023 achieved good accuracy, with the user accuracies, producer accuracies and F1-score of rivers exceeding 80.4%, 85.0%, and 83.7%, respectively. In 2016, rivers of the CRED achieved medium accuracy, with F1-score of 78.4%. A further data comparison indicated that our CRED had good consistency with existing river-related datasets, with correlation coefficient (R) greater than 0.75. The area statistics indicated that the river area in China were 44948.78 km<sup>2</sup> in 2023. From 2016 to 2023, the river areas were characterized by an initial increase, followed by a decrease, and then a slight increase. Spatially, the decreased rivers were located mainly in Southeast China, whereas the increased rivers were distributed mainly in Central China and Northeast China. In general, the CRED explicitly delineated river extents and dynamics in China, which could provide a good foundation for improving river ecology and management.\",\"PeriodicalId\":13116,\"journal\":{\"name\":\"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing\",\"volume\":\"18 \",\"pages\":\"16694-16706\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11061783\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11061783/\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11061783/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Exploring the Annual Dynamics of China’s Rivers From 2016 to 2023 Based on Sentinel-Derived Datasets
Rivers play import roles in ecological biodiversity, shipping trade, and carbon cycle. In our study, we developed an effective, robust, and accurate algorithm for national-scale river mapping, and produced the annual China river extent dataset (CRED) from 2016 to 2023. We assessed the reliability of the CRED based on test samples and data intercomparison. The results indicated that the overall accuracies of the CRED were greater than 88.4% from 2016 to 2023. The rivers of the CRED from 2017 to 2023 achieved good accuracy, with the user accuracies, producer accuracies and F1-score of rivers exceeding 80.4%, 85.0%, and 83.7%, respectively. In 2016, rivers of the CRED achieved medium accuracy, with F1-score of 78.4%. A further data comparison indicated that our CRED had good consistency with existing river-related datasets, with correlation coefficient (R) greater than 0.75. The area statistics indicated that the river area in China were 44948.78 km2 in 2023. From 2016 to 2023, the river areas were characterized by an initial increase, followed by a decrease, and then a slight increase. Spatially, the decreased rivers were located mainly in Southeast China, whereas the increased rivers were distributed mainly in Central China and Northeast China. In general, the CRED explicitly delineated river extents and dynamics in China, which could provide a good foundation for improving river ecology and management.
期刊介绍:
The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.