间歇式生物反应器中麻疹病毒生产的数学模型。

IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Shiny Samuel,Todd Przybycien
{"title":"间歇式生物反应器中麻疹病毒生产的数学模型。","authors":"Shiny Samuel,Todd Przybycien","doi":"10.1002/bit.70017","DOIUrl":null,"url":null,"abstract":"Measles virus (MeV) is a promising vector for vaccines, gene therapy, and oncolytic virus therapy due to its safety, efficacy, and natural ability to target tumor cells. However, MeV production in bioreactors, typically with microcarrier cultures of Vero cells, is challenging because of the sensitivity of the virus to temperature, shear stress, and low pH. At 37°C, the optimal growth temperature of Vero cells, MeV has a short half-life of 1 h, requiring precise control of the harvest time (TOH) to maximize yield. We developed a mathematical model to predict the TOH for recombinant MeV production in Vero cells. Model predictions for TOH were in good agreement with observations across five separate bioreactor runs, despite significant run-to-run performance variations. Parameter analysis revealed that virus attachment parameters and thermal degradation rate significantly influence infection dynamics. Furthermore, the model highlights the critical importance of accurately characterizing seed virus quality, particularly concerning defective interfering particle (DIP) content, to minimize production variability and optimize yield.","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":"84 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical Model for Measles Virus Production in Batch Bioreactors.\",\"authors\":\"Shiny Samuel,Todd Przybycien\",\"doi\":\"10.1002/bit.70017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Measles virus (MeV) is a promising vector for vaccines, gene therapy, and oncolytic virus therapy due to its safety, efficacy, and natural ability to target tumor cells. However, MeV production in bioreactors, typically with microcarrier cultures of Vero cells, is challenging because of the sensitivity of the virus to temperature, shear stress, and low pH. At 37°C, the optimal growth temperature of Vero cells, MeV has a short half-life of 1 h, requiring precise control of the harvest time (TOH) to maximize yield. We developed a mathematical model to predict the TOH for recombinant MeV production in Vero cells. Model predictions for TOH were in good agreement with observations across five separate bioreactor runs, despite significant run-to-run performance variations. Parameter analysis revealed that virus attachment parameters and thermal degradation rate significantly influence infection dynamics. Furthermore, the model highlights the critical importance of accurately characterizing seed virus quality, particularly concerning defective interfering particle (DIP) content, to minimize production variability and optimize yield.\",\"PeriodicalId\":9168,\"journal\":{\"name\":\"Biotechnology and Bioengineering\",\"volume\":\"84 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology and Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/bit.70017\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bit.70017","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

麻疹病毒(MeV)因其安全性、有效性和天然靶向肿瘤细胞的能力而成为疫苗、基因治疗和溶瘤病毒治疗的一种有前景的载体。然而,在生物反应器中生产MeV,通常是用微载体培养的Vero细胞,具有挑战性,因为病毒对温度、剪切应力和低ph值敏感。在37°C (Vero细胞的最佳生长温度)下,MeV的半衰期很短,只有1小时,需要精确控制收获时间(TOH)以最大化产量。我们建立了一个数学模型来预测重组MeV在Vero细胞中产生的TOH。模型对TOH的预测与五个单独的生物反应器运行的观察结果很好地吻合,尽管运行之间的性能存在显著差异。参数分析表明,病毒附着参数和热降解率对感染动力学有显著影响。此外,该模型强调了准确表征种子病毒质量的重要性,特别是关于缺陷干扰颗粒(DIP)含量,以最大限度地减少生产变异性并优化产量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mathematical Model for Measles Virus Production in Batch Bioreactors.
Measles virus (MeV) is a promising vector for vaccines, gene therapy, and oncolytic virus therapy due to its safety, efficacy, and natural ability to target tumor cells. However, MeV production in bioreactors, typically with microcarrier cultures of Vero cells, is challenging because of the sensitivity of the virus to temperature, shear stress, and low pH. At 37°C, the optimal growth temperature of Vero cells, MeV has a short half-life of 1 h, requiring precise control of the harvest time (TOH) to maximize yield. We developed a mathematical model to predict the TOH for recombinant MeV production in Vero cells. Model predictions for TOH were in good agreement with observations across five separate bioreactor runs, despite significant run-to-run performance variations. Parameter analysis revealed that virus attachment parameters and thermal degradation rate significantly influence infection dynamics. Furthermore, the model highlights the critical importance of accurately characterizing seed virus quality, particularly concerning defective interfering particle (DIP) content, to minimize production variability and optimize yield.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biotechnology and Bioengineering
Biotechnology and Bioengineering 工程技术-生物工程与应用微生物
CiteScore
7.90
自引率
5.30%
发文量
280
审稿时长
2.1 months
期刊介绍: Biotechnology & Bioengineering publishes Perspectives, Articles, Reviews, Mini-Reviews, and Communications to the Editor that embrace all aspects of biotechnology. These include: -Enzyme systems and their applications, including enzyme reactors, purification, and applied aspects of protein engineering -Animal-cell biotechnology, including media development -Applied aspects of cellular physiology, metabolism, and energetics -Biocatalysis and applied enzymology, including enzyme reactors, protein engineering, and nanobiotechnology -Biothermodynamics -Biofuels, including biomass and renewable resource engineering -Biomaterials, including delivery systems and materials for tissue engineering -Bioprocess engineering, including kinetics and modeling of biological systems, transport phenomena in bioreactors, bioreactor design, monitoring, and control -Biosensors and instrumentation -Computational and systems biology, including bioinformatics and genomic/proteomic studies -Environmental biotechnology, including biofilms, algal systems, and bioremediation -Metabolic and cellular engineering -Plant-cell biotechnology -Spectroscopic and other analytical techniques for biotechnological applications -Synthetic biology -Tissue engineering, stem-cell bioengineering, regenerative medicine, gene therapy and delivery systems The editors will consider papers for publication based on novelty, their immediate or future impact on biotechnological processes, and their contribution to the advancement of biochemical engineering science. Submission of papers dealing with routine aspects of bioprocessing, description of established equipment, and routine applications of established methodologies (e.g., control strategies, modeling, experimental methods) is discouraged. Theoretical papers will be judged based on the novelty of the approach and their potential impact, or on their novel capability to predict and elucidate experimental observations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信