使用深度学习表征单曝光双线光谱双星

IF 5.8 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
A. Binnenfeld, S. Lilek, R. Nasser, R. Giryes, S. Zucker
{"title":"使用深度学习表征单曝光双线光谱双星","authors":"A. Binnenfeld, S. Lilek, R. Nasser, R. Giryes, S. Zucker","doi":"10.1051/0004-6361/202554091","DOIUrl":null,"url":null,"abstract":"Distinguishing the component spectra of double-line spectroscopic binaries (SB2s) and extracting their stellar parameters is a complex and computationally intensive task that usually requires observations spanning several epochs that represent various orbital phases. This poses an especially significant challenge for large surveys such as <i>Gaia<i/> or LAMOST, where the number of available spectra per target is often not enough for a proper spectral disentangling. We present a new approach for characterizing SB2 components from single-exposure spectroscopic observations. The proposed tool uses deep neural networks to extract the stellar parameters of the individual component spectra that comprise the single exposure, without explicitly disentangling them or extracting their radial velocities. The neural networks were trained, tested, and validated using simulated data resembling <i>Gaia<i/> RVS spectra, which will be made available to the community in the coming <i>Gaia<i/> data releases. We expect our tool to be useful in their analysis.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":"74 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using deep learning to characterize single-exposure double-line spectroscopic binaries\",\"authors\":\"A. Binnenfeld, S. Lilek, R. Nasser, R. Giryes, S. Zucker\",\"doi\":\"10.1051/0004-6361/202554091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distinguishing the component spectra of double-line spectroscopic binaries (SB2s) and extracting their stellar parameters is a complex and computationally intensive task that usually requires observations spanning several epochs that represent various orbital phases. This poses an especially significant challenge for large surveys such as <i>Gaia<i/> or LAMOST, where the number of available spectra per target is often not enough for a proper spectral disentangling. We present a new approach for characterizing SB2 components from single-exposure spectroscopic observations. The proposed tool uses deep neural networks to extract the stellar parameters of the individual component spectra that comprise the single exposure, without explicitly disentangling them or extracting their radial velocities. The neural networks were trained, tested, and validated using simulated data resembling <i>Gaia<i/> RVS spectra, which will be made available to the community in the coming <i>Gaia<i/> data releases. We expect our tool to be useful in their analysis.\",\"PeriodicalId\":8571,\"journal\":{\"name\":\"Astronomy & Astrophysics\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astronomy & Astrophysics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1051/0004-6361/202554091\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202554091","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

区分双线双星(SB2s)的组成光谱并提取其恒星参数是一项复杂且计算密集型的任务,通常需要跨越代表不同轨道相位的几个时代的观测。这对于像盖亚或LAMOST这样的大型巡天来说是一个特别重大的挑战,因为每个目标的可用光谱数量往往不足以进行适当的光谱解开。我们提出了一种从单次曝光光谱观测中表征SB2组分的新方法。所提出的工具使用深度神经网络来提取构成单次曝光的单个成分光谱的恒星参数,而无需明确地解开它们或提取它们的径向速度。神经网络使用类似Gaia RVS光谱的模拟数据进行训练、测试和验证,这些数据将在即将发布的Gaia数据中提供给社区。我们希望我们的工具对他们的分析有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using deep learning to characterize single-exposure double-line spectroscopic binaries
Distinguishing the component spectra of double-line spectroscopic binaries (SB2s) and extracting their stellar parameters is a complex and computationally intensive task that usually requires observations spanning several epochs that represent various orbital phases. This poses an especially significant challenge for large surveys such as Gaia or LAMOST, where the number of available spectra per target is often not enough for a proper spectral disentangling. We present a new approach for characterizing SB2 components from single-exposure spectroscopic observations. The proposed tool uses deep neural networks to extract the stellar parameters of the individual component spectra that comprise the single exposure, without explicitly disentangling them or extracting their radial velocities. The neural networks were trained, tested, and validated using simulated data resembling Gaia RVS spectra, which will be made available to the community in the coming Gaia data releases. We expect our tool to be useful in their analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astronomy & Astrophysics
Astronomy & Astrophysics 地学天文-天文与天体物理
CiteScore
10.20
自引率
27.70%
发文量
2105
审稿时长
1-2 weeks
期刊介绍: Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信