变迁移率Allen-Cahn方程的后验误差控制

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
A. Brunk, J. Giesselmann, M. Lukáčová-Medvi[math]ová
{"title":"变迁移率Allen-Cahn方程的后验误差控制","authors":"A. Brunk, J. Giesselmann, M. Lukáčová-Medvi[math]ová","doi":"10.1137/24m1646406","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 63, Issue 4, Page 1540-1560, August 2025. <br/> Abstract. In this work, we derive a [math]-robust a posteriori error estimator for finite element approximations of the Allen–Cahn equation with variable nondegenerate mobility. The estimator utilizes spectral estimates for the linearized steady part of the differential operator as well as a conditional stability estimate based on a weighted sum of Bregman distances, based on the energy and a functional related to the mobility. A suitable reconstruction of the numerical solution in the stability estimate leads to a fully computable estimator.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"5 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Posteriori Error Control for the Allen–Cahn Equation with Variable Mobility\",\"authors\":\"A. Brunk, J. Giesselmann, M. Lukáčová-Medvi[math]ová\",\"doi\":\"10.1137/24m1646406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Numerical Analysis, Volume 63, Issue 4, Page 1540-1560, August 2025. <br/> Abstract. In this work, we derive a [math]-robust a posteriori error estimator for finite element approximations of the Allen–Cahn equation with variable nondegenerate mobility. The estimator utilizes spectral estimates for the linearized steady part of the differential operator as well as a conditional stability estimate based on a weighted sum of Bregman distances, based on the energy and a functional related to the mobility. A suitable reconstruction of the numerical solution in the stability estimate leads to a fully computable estimator.\",\"PeriodicalId\":49527,\"journal\":{\"name\":\"SIAM Journal on Numerical Analysis\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/24m1646406\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/24m1646406","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM数值分析杂志,第63卷,第4期,第1540-1560页,2025年8月。摘要。在这项工作中,我们为具有可变非退化迁移率的Allen-Cahn方程的有限元近似导出了一个[数学]鲁棒的后检误差估计。该估计器利用微分算子线性化稳定部分的谱估计,以及基于布雷格曼距离加权和的条件稳定性估计,基于能量和与迁移率相关的函数。对稳定性估计中的数值解进行适当的重构,得到一个完全可计算的估计量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Posteriori Error Control for the Allen–Cahn Equation with Variable Mobility
SIAM Journal on Numerical Analysis, Volume 63, Issue 4, Page 1540-1560, August 2025.
Abstract. In this work, we derive a [math]-robust a posteriori error estimator for finite element approximations of the Allen–Cahn equation with variable nondegenerate mobility. The estimator utilizes spectral estimates for the linearized steady part of the differential operator as well as a conditional stability estimate based on a weighted sum of Bregman distances, based on the energy and a functional related to the mobility. A suitable reconstruction of the numerical solution in the stability estimate leads to a fully computable estimator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
6.90%
发文量
110
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信