{"title":"肿瘤内源性ENO1抑制可促进抗肿瘤免疫反应,促进抗pd - l1免疫治疗在膀胱癌中的疗效。","authors":"Chengquan Shen, Jing Liu, Ding Hu, Changxue Liu, Fei Xie, Yonghua Wang","doi":"10.1186/s13046-025-03464-x","DOIUrl":null,"url":null,"abstract":"<p><p>Immunotherapy has revolutionized cancer treatment, yet understanding immunotherapy resistance mechanisms remains challenging. Here, a CRISPR cas9 screening in vivo and an RNA-sequencing for clinical immunotherapy resistance BC samples identified enolase 1 (ENO1) as a potent regulator of anti-PD-L1 treatment efficacy. Investigation of clinical BC samples demonstrated a correlation between ENO1 overexpression and immune evasion in BC, evidenced by reduced CD8<sup>+</sup> T cell infiltration and resistance to anti-PD-L1 therapy. Increased CD8<sup>+</sup> T cell infiltration and function were indicative of antitumor immunity, which was elicited by ENO1 knockdown, which also suppressed carcinogenesis. Single-cell RNA sequencing demonstrated that wild-type (WT) and ENO1 knockout (KO) tumors have different immune cell compositions with the latter preferring an immunostimulatory microenvironment. Mechanistically, ENO1 regulated CD8<sup>+</sup> T cell function and tumor-associated macrophage (TAM) polarization via the SPP1-ITGA4/ITGB1 pathway in the TME. Importantly, genetic and pharmacological inhibition of ENO1 sensitizes tumors to anti-tumor immunity and synergizes with anti-PD-L1 therapy. The results highlight tumor-intrinsic ENO1 as a critical regulator of tumor immune evasion in BC. Targeting ENO1 enhance the efficacy of immune checkpoint blockade therapy by promoting antitumor immunity.</p>","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":"44 1","pages":"207"},"PeriodicalIF":12.8000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12261641/pdf/","citationCount":"0","resultStr":"{\"title\":\"Tumor-intrinsic ENO1 inhibition promotes antitumor immune response and facilitates the efficacy of anti-PD-L1 immunotherapy in bladder cancer.\",\"authors\":\"Chengquan Shen, Jing Liu, Ding Hu, Changxue Liu, Fei Xie, Yonghua Wang\",\"doi\":\"10.1186/s13046-025-03464-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Immunotherapy has revolutionized cancer treatment, yet understanding immunotherapy resistance mechanisms remains challenging. Here, a CRISPR cas9 screening in vivo and an RNA-sequencing for clinical immunotherapy resistance BC samples identified enolase 1 (ENO1) as a potent regulator of anti-PD-L1 treatment efficacy. Investigation of clinical BC samples demonstrated a correlation between ENO1 overexpression and immune evasion in BC, evidenced by reduced CD8<sup>+</sup> T cell infiltration and resistance to anti-PD-L1 therapy. Increased CD8<sup>+</sup> T cell infiltration and function were indicative of antitumor immunity, which was elicited by ENO1 knockdown, which also suppressed carcinogenesis. Single-cell RNA sequencing demonstrated that wild-type (WT) and ENO1 knockout (KO) tumors have different immune cell compositions with the latter preferring an immunostimulatory microenvironment. Mechanistically, ENO1 regulated CD8<sup>+</sup> T cell function and tumor-associated macrophage (TAM) polarization via the SPP1-ITGA4/ITGB1 pathway in the TME. Importantly, genetic and pharmacological inhibition of ENO1 sensitizes tumors to anti-tumor immunity and synergizes with anti-PD-L1 therapy. The results highlight tumor-intrinsic ENO1 as a critical regulator of tumor immune evasion in BC. Targeting ENO1 enhance the efficacy of immune checkpoint blockade therapy by promoting antitumor immunity.</p>\",\"PeriodicalId\":50199,\"journal\":{\"name\":\"Journal of Experimental & Clinical Cancer Research\",\"volume\":\"44 1\",\"pages\":\"207\"},\"PeriodicalIF\":12.8000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12261641/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental & Clinical Cancer Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13046-025-03464-x\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Clinical Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13046-025-03464-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Tumor-intrinsic ENO1 inhibition promotes antitumor immune response and facilitates the efficacy of anti-PD-L1 immunotherapy in bladder cancer.
Immunotherapy has revolutionized cancer treatment, yet understanding immunotherapy resistance mechanisms remains challenging. Here, a CRISPR cas9 screening in vivo and an RNA-sequencing for clinical immunotherapy resistance BC samples identified enolase 1 (ENO1) as a potent regulator of anti-PD-L1 treatment efficacy. Investigation of clinical BC samples demonstrated a correlation between ENO1 overexpression and immune evasion in BC, evidenced by reduced CD8+ T cell infiltration and resistance to anti-PD-L1 therapy. Increased CD8+ T cell infiltration and function were indicative of antitumor immunity, which was elicited by ENO1 knockdown, which also suppressed carcinogenesis. Single-cell RNA sequencing demonstrated that wild-type (WT) and ENO1 knockout (KO) tumors have different immune cell compositions with the latter preferring an immunostimulatory microenvironment. Mechanistically, ENO1 regulated CD8+ T cell function and tumor-associated macrophage (TAM) polarization via the SPP1-ITGA4/ITGB1 pathway in the TME. Importantly, genetic and pharmacological inhibition of ENO1 sensitizes tumors to anti-tumor immunity and synergizes with anti-PD-L1 therapy. The results highlight tumor-intrinsic ENO1 as a critical regulator of tumor immune evasion in BC. Targeting ENO1 enhance the efficacy of immune checkpoint blockade therapy by promoting antitumor immunity.
期刊介绍:
The Journal of Experimental & Clinical Cancer Research is an esteemed peer-reviewed publication that focuses on cancer research, encompassing everything from fundamental discoveries to practical applications.
We welcome submissions that showcase groundbreaking advancements in the field of cancer research, especially those that bridge the gap between laboratory findings and clinical implementation. Our goal is to foster a deeper understanding of cancer, improve prevention and detection strategies, facilitate accurate diagnosis, and enhance treatment options.
We are particularly interested in manuscripts that shed light on the mechanisms behind the development and progression of cancer, including metastasis. Additionally, we encourage submissions that explore molecular alterations or biomarkers that can help predict the efficacy of different treatments or identify drug resistance. Translational research related to targeted therapies, personalized medicine, tumor immunotherapy, and innovative approaches applicable to clinical investigations are also of great interest to us.
We provide a platform for the dissemination of large-scale molecular characterizations of human tumors and encourage researchers to share their insights, discoveries, and methodologies with the wider scientific community.
By publishing high-quality research articles, reviews, and commentaries, the Journal of Experimental & Clinical Cancer Research strives to contribute to the continuous improvement of cancer care and make a meaningful impact on patients' lives.