髓细胞驱动的内皮细胞向周细胞的转分化促进脑卒中后血脑屏障功能的恢复和大脑的自我修复。

IF 6.4 1区 生物学 Q1 BIOLOGY
eLife Pub Date : 2025-07-16 DOI:10.7554/eLife.105593
Tingbo Li, Ling Yang, Jiaqi Tu, Yufan Hao, Zhu Zhu, Yingjie Xiong, Qingzhu Gao, Lili Zhou, Guanglei Xie, Dongdong Zhang, Xuzhao Li, Yuxiao Jin, Yiyi Zhang, Bingrui Zhao, Nan Li, Xi Wang, Jie-Min Jia
{"title":"髓细胞驱动的内皮细胞向周细胞的转分化促进脑卒中后血脑屏障功能的恢复和大脑的自我修复。","authors":"Tingbo Li, Ling Yang, Jiaqi Tu, Yufan Hao, Zhu Zhu, Yingjie Xiong, Qingzhu Gao, Lili Zhou, Guanglei Xie, Dongdong Zhang, Xuzhao Li, Yuxiao Jin, Yiyi Zhang, Bingrui Zhao, Nan Li, Xi Wang, Jie-Min Jia","doi":"10.7554/eLife.105593","DOIUrl":null,"url":null,"abstract":"<p><p>Ischemic stroke, one of the leading causes of death in the world, is accompanied by the dysfunction of the blood-brain barrier (BBB), which aggravates neuron damage. However, the mechanisms underlying the restoration of BBB in the chronic stage after stroke remain unclear. Here, pericyte pool alterations and their consequences for BBB integrity and brain recovery were analyzed in the C57BL/6 mice stroke model. Lineage tracing, RNA-seq, and immunofluorescence staining revealed endothelial cell (EC) transdifferentiation into pericytes (E-pericytes) in C57BL/6 mice after stroke. E-pericytes depletion by diphtheria toxin A (DTA) aggravated BBB leakage and exacerbated neurological deficits in the MCAO model. The myeloid cell-driven transdifferentiation of ECs into pericytes accelerated BBB restoration and brain self-repair after stroke via endothelial-mesenchymal transformation (EndoMT). Decreasing the number of E-pericytes by specific knockout of the <i>Tgfbr2</i> gene in ECs also aggravated BBB leakage and exacerbated neurological deficits. EC-specific overexpression of the <i>Tgfbr2</i> gene promoting E-pericytes transdifferentiation reduced BBB leakage and exerted neuroprotective effects. Deciphering the mechanism by which E-pericytes coordinate post-stroke recovery may reveal a novel therapeutic opportunity.</p>","PeriodicalId":11640,"journal":{"name":"eLife","volume":"14 ","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12266722/pdf/","citationCount":"0","resultStr":"{\"title\":\"The myeloid cell-driven transdifferentiation of endothelial cells into pericytes promotes the restoration of BBB function and brain self-repair after stroke.\",\"authors\":\"Tingbo Li, Ling Yang, Jiaqi Tu, Yufan Hao, Zhu Zhu, Yingjie Xiong, Qingzhu Gao, Lili Zhou, Guanglei Xie, Dongdong Zhang, Xuzhao Li, Yuxiao Jin, Yiyi Zhang, Bingrui Zhao, Nan Li, Xi Wang, Jie-Min Jia\",\"doi\":\"10.7554/eLife.105593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ischemic stroke, one of the leading causes of death in the world, is accompanied by the dysfunction of the blood-brain barrier (BBB), which aggravates neuron damage. However, the mechanisms underlying the restoration of BBB in the chronic stage after stroke remain unclear. Here, pericyte pool alterations and their consequences for BBB integrity and brain recovery were analyzed in the C57BL/6 mice stroke model. Lineage tracing, RNA-seq, and immunofluorescence staining revealed endothelial cell (EC) transdifferentiation into pericytes (E-pericytes) in C57BL/6 mice after stroke. E-pericytes depletion by diphtheria toxin A (DTA) aggravated BBB leakage and exacerbated neurological deficits in the MCAO model. The myeloid cell-driven transdifferentiation of ECs into pericytes accelerated BBB restoration and brain self-repair after stroke via endothelial-mesenchymal transformation (EndoMT). Decreasing the number of E-pericytes by specific knockout of the <i>Tgfbr2</i> gene in ECs also aggravated BBB leakage and exacerbated neurological deficits. EC-specific overexpression of the <i>Tgfbr2</i> gene promoting E-pericytes transdifferentiation reduced BBB leakage and exerted neuroprotective effects. Deciphering the mechanism by which E-pericytes coordinate post-stroke recovery may reveal a novel therapeutic opportunity.</p>\",\"PeriodicalId\":11640,\"journal\":{\"name\":\"eLife\",\"volume\":\"14 \",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12266722/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eLife\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.7554/eLife.105593\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eLife","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7554/eLife.105593","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

缺血性中风是世界上主要的死亡原因之一,它伴随着血脑屏障(BBB)功能障碍,从而加重了神经元的损伤。然而,脑卒中后慢性期血脑屏障恢复的机制尚不清楚。在C57BL/6小鼠脑卒中模型中,我们分析了周细胞池的改变及其对血脑屏障完整性和脑恢复的影响。谱系追踪、RNA-seq和免疫荧光染色显示C57BL/6小鼠脑卒中后内皮细胞(EC)转分化为周细胞(e -周细胞)。在MCAO模型中,白喉毒素A (DTA)引起的e -周细胞耗竭加重了血脑屏障渗漏和神经功能缺损。髓系细胞驱动的内皮细胞向周细胞的转分化加速了脑卒中后血脑屏障的恢复和脑内内皮-间充质转化(EndoMT)的自我修复。通过特异性敲除ECs中的Tgfbr2基因来减少e -周细胞的数量也会加重血脑屏障渗漏和神经功能障碍。ec特异性过表达Tgfbr2基因,促进e -周细胞转分化,减少血脑屏障渗漏,发挥神经保护作用。破译e -周细胞协调中风后恢复的机制可能揭示一种新的治疗机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The myeloid cell-driven transdifferentiation of endothelial cells into pericytes promotes the restoration of BBB function and brain self-repair after stroke.

Ischemic stroke, one of the leading causes of death in the world, is accompanied by the dysfunction of the blood-brain barrier (BBB), which aggravates neuron damage. However, the mechanisms underlying the restoration of BBB in the chronic stage after stroke remain unclear. Here, pericyte pool alterations and their consequences for BBB integrity and brain recovery were analyzed in the C57BL/6 mice stroke model. Lineage tracing, RNA-seq, and immunofluorescence staining revealed endothelial cell (EC) transdifferentiation into pericytes (E-pericytes) in C57BL/6 mice after stroke. E-pericytes depletion by diphtheria toxin A (DTA) aggravated BBB leakage and exacerbated neurological deficits in the MCAO model. The myeloid cell-driven transdifferentiation of ECs into pericytes accelerated BBB restoration and brain self-repair after stroke via endothelial-mesenchymal transformation (EndoMT). Decreasing the number of E-pericytes by specific knockout of the Tgfbr2 gene in ECs also aggravated BBB leakage and exacerbated neurological deficits. EC-specific overexpression of the Tgfbr2 gene promoting E-pericytes transdifferentiation reduced BBB leakage and exerted neuroprotective effects. Deciphering the mechanism by which E-pericytes coordinate post-stroke recovery may reveal a novel therapeutic opportunity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
eLife
eLife BIOLOGY-
CiteScore
12.90
自引率
3.90%
发文量
3122
审稿时长
17 weeks
期刊介绍: eLife is a distinguished, not-for-profit, peer-reviewed open access scientific journal that specializes in the fields of biomedical and life sciences. eLife is known for its selective publication process, which includes a variety of article types such as: Research Articles: Detailed reports of original research findings. Short Reports: Concise presentations of significant findings that do not warrant a full-length research article. Tools and Resources: Descriptions of new tools, technologies, or resources that facilitate scientific research. Research Advances: Brief reports on significant scientific advancements that have immediate implications for the field. Scientific Correspondence: Short communications that comment on or provide additional information related to published articles. Review Articles: Comprehensive overviews of a specific topic or field within the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信