脂质体中五聚体配体门控离子通道的低温电镜结构。

IF 6.4 1区 生物学 Q1 BIOLOGY
eLife Pub Date : 2025-07-16 DOI:10.7554/eLife.106728
Vikram Dalal, Brandon K Tan, Hanrui Xu, Wayland W L Cheng
{"title":"脂质体中五聚体配体门控离子通道的低温电镜结构。","authors":"Vikram Dalal, Brandon K Tan, Hanrui Xu, Wayland W L Cheng","doi":"10.7554/eLife.106728","DOIUrl":null,"url":null,"abstract":"<p><p>Detergents and lipid nanodiscs affect the cryo-EM structures of pentameric ligand-gated ion channels (pLGICs) including ELIC. To determine the structure of a pLGIC in a membrane environment that supports ion channel function, we performed single particle cryo-EM of ELIC in liposomes. ELIC activation and desensitization were confirmed in liposomes with a stopped-flow thallium flux assay. Using WT ELIC and a non-desensitizing mutant (ELIC5), we captured resting, activated, and desensitized structures at high resolution. In the desensitized structure, the ion conduction pore has a constriction at the 9' leucine of the pore-lining M2 helix, indicating that 9' is the desensitization gate in ELIC. The agonist-bound structures of ELIC in liposomes are distinct from those in nanodiscs. In general, the transmembrane domain is more loosely packed in liposomes compared to nanodiscs. It has been suggested that large nanodiscs are superior for supporting membrane protein function. However, ELIC localizes to the rim of large circularized nanodiscs, and structures of ELIC in large nanodiscs deviate from the liposome structures more than those in small nanodiscs. Using liposomes for cryo-EM structure determination of a pLGIC increases our confidence that the structures are snapshots of functional states.</p>","PeriodicalId":11640,"journal":{"name":"eLife","volume":"14 ","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12266721/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cryo-EM structures of a pentameric ligand-gated ion channel in liposomes.\",\"authors\":\"Vikram Dalal, Brandon K Tan, Hanrui Xu, Wayland W L Cheng\",\"doi\":\"10.7554/eLife.106728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Detergents and lipid nanodiscs affect the cryo-EM structures of pentameric ligand-gated ion channels (pLGICs) including ELIC. To determine the structure of a pLGIC in a membrane environment that supports ion channel function, we performed single particle cryo-EM of ELIC in liposomes. ELIC activation and desensitization were confirmed in liposomes with a stopped-flow thallium flux assay. Using WT ELIC and a non-desensitizing mutant (ELIC5), we captured resting, activated, and desensitized structures at high resolution. In the desensitized structure, the ion conduction pore has a constriction at the 9' leucine of the pore-lining M2 helix, indicating that 9' is the desensitization gate in ELIC. The agonist-bound structures of ELIC in liposomes are distinct from those in nanodiscs. In general, the transmembrane domain is more loosely packed in liposomes compared to nanodiscs. It has been suggested that large nanodiscs are superior for supporting membrane protein function. However, ELIC localizes to the rim of large circularized nanodiscs, and structures of ELIC in large nanodiscs deviate from the liposome structures more than those in small nanodiscs. Using liposomes for cryo-EM structure determination of a pLGIC increases our confidence that the structures are snapshots of functional states.</p>\",\"PeriodicalId\":11640,\"journal\":{\"name\":\"eLife\",\"volume\":\"14 \",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12266721/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eLife\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.7554/eLife.106728\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eLife","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7554/eLife.106728","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

洗涤剂和脂质纳米盘影响五聚体配体门控离子通道(plics)的低温电镜结构,包括ELIC。为了确定支持离子通道功能的膜环境中pLGIC的结构,我们对脂质体中的ELIC进行了单颗粒低温电镜观察。通过停流铊通量测定证实脂质体中ELIC的激活和脱敏。利用WT ELIC和非脱敏突变体(ELIC5),我们以高分辨率捕获了静息、激活和脱敏的结构。在脱敏结构中,离子传导孔在衬孔M2螺旋的9′亮氨酸处有收缩,说明9′是ELIC中的脱敏门。脂质体中ELIC的激动剂结合结构与纳米圆盘中的结构不同。一般来说,与纳米圆盘相比,脂质体中的跨膜结构域更松散。研究表明,大的纳米圆盘在支持膜蛋白功能方面具有优势。然而,ELIC局限于大的圆形纳米圆盘的边缘,并且大纳米圆盘中的ELIC结构比小纳米圆盘中的ELIC结构更偏离脂质体结构。使用脂质体对pLGIC进行低温电镜结构测定,增加了我们对结构是功能状态快照的信心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cryo-EM structures of a pentameric ligand-gated ion channel in liposomes.

Detergents and lipid nanodiscs affect the cryo-EM structures of pentameric ligand-gated ion channels (pLGICs) including ELIC. To determine the structure of a pLGIC in a membrane environment that supports ion channel function, we performed single particle cryo-EM of ELIC in liposomes. ELIC activation and desensitization were confirmed in liposomes with a stopped-flow thallium flux assay. Using WT ELIC and a non-desensitizing mutant (ELIC5), we captured resting, activated, and desensitized structures at high resolution. In the desensitized structure, the ion conduction pore has a constriction at the 9' leucine of the pore-lining M2 helix, indicating that 9' is the desensitization gate in ELIC. The agonist-bound structures of ELIC in liposomes are distinct from those in nanodiscs. In general, the transmembrane domain is more loosely packed in liposomes compared to nanodiscs. It has been suggested that large nanodiscs are superior for supporting membrane protein function. However, ELIC localizes to the rim of large circularized nanodiscs, and structures of ELIC in large nanodiscs deviate from the liposome structures more than those in small nanodiscs. Using liposomes for cryo-EM structure determination of a pLGIC increases our confidence that the structures are snapshots of functional states.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
eLife
eLife BIOLOGY-
CiteScore
12.90
自引率
3.90%
发文量
3122
审稿时长
17 weeks
期刊介绍: eLife is a distinguished, not-for-profit, peer-reviewed open access scientific journal that specializes in the fields of biomedical and life sciences. eLife is known for its selective publication process, which includes a variety of article types such as: Research Articles: Detailed reports of original research findings. Short Reports: Concise presentations of significant findings that do not warrant a full-length research article. Tools and Resources: Descriptions of new tools, technologies, or resources that facilitate scientific research. Research Advances: Brief reports on significant scientific advancements that have immediate implications for the field. Scientific Correspondence: Short communications that comment on or provide additional information related to published articles. Review Articles: Comprehensive overviews of a specific topic or field within the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信