Oliver Rauh, Tobias Schulze, James L Van Etten, Gerhard Thiel, Anna Moroni
{"title":"K+通道的模块化结构:孔隙模块的功能可塑性。","authors":"Oliver Rauh, Tobias Schulze, James L Van Etten, Gerhard Thiel, Anna Moroni","doi":"10.1038/s44319-025-00519-0","DOIUrl":null,"url":null,"abstract":"<p><p>Miniature K<sup>+</sup> channel proteins from viruses (Kcv) are structurally and functionally equivalent to the pore module of all K<sup>+</sup> channels. Here, we summarize data in support of the hypothesis that pores of primitive K<sup>+</sup> channels served as building blocks for evolving the modern complex mammalian ion channels. Experimental data show that mutations in Kcv channels can generate gating phenomena like slow-activating inward or outward rectification, which are typical of complex mammalian channels. Hence, the basic mechanism for rectification is an inherent property of the pore module, which was further tuned and/or amplified during evolution by the addition of sensory protein domains. This evolutionary trend can be experimentally mimicked by coupling small pore units with a voltage-sensing domain or a glutamate-binding domain to acquire voltage and ligand-sensitive gating. The same modularity principle can be exploited in the design of synthetic channels in which the Kcv pore is coupled to orthogonal sensor domains. These synthetic channels exhibit new gating properties like a sensitivity to light or Ca<sup>2+</sup>, which originate from their attached sensor domains.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modular architecture of K<sup>+</sup> channels: the functional plasticity of the pore module.\",\"authors\":\"Oliver Rauh, Tobias Schulze, James L Van Etten, Gerhard Thiel, Anna Moroni\",\"doi\":\"10.1038/s44319-025-00519-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Miniature K<sup>+</sup> channel proteins from viruses (Kcv) are structurally and functionally equivalent to the pore module of all K<sup>+</sup> channels. Here, we summarize data in support of the hypothesis that pores of primitive K<sup>+</sup> channels served as building blocks for evolving the modern complex mammalian ion channels. Experimental data show that mutations in Kcv channels can generate gating phenomena like slow-activating inward or outward rectification, which are typical of complex mammalian channels. Hence, the basic mechanism for rectification is an inherent property of the pore module, which was further tuned and/or amplified during evolution by the addition of sensory protein domains. This evolutionary trend can be experimentally mimicked by coupling small pore units with a voltage-sensing domain or a glutamate-binding domain to acquire voltage and ligand-sensitive gating. The same modularity principle can be exploited in the design of synthetic channels in which the Kcv pore is coupled to orthogonal sensor domains. These synthetic channels exhibit new gating properties like a sensitivity to light or Ca<sup>2+</sup>, which originate from their attached sensor domains.</p>\",\"PeriodicalId\":11541,\"journal\":{\"name\":\"EMBO Reports\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EMBO Reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s44319-025-00519-0\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44319-025-00519-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Modular architecture of K+ channels: the functional plasticity of the pore module.
Miniature K+ channel proteins from viruses (Kcv) are structurally and functionally equivalent to the pore module of all K+ channels. Here, we summarize data in support of the hypothesis that pores of primitive K+ channels served as building blocks for evolving the modern complex mammalian ion channels. Experimental data show that mutations in Kcv channels can generate gating phenomena like slow-activating inward or outward rectification, which are typical of complex mammalian channels. Hence, the basic mechanism for rectification is an inherent property of the pore module, which was further tuned and/or amplified during evolution by the addition of sensory protein domains. This evolutionary trend can be experimentally mimicked by coupling small pore units with a voltage-sensing domain or a glutamate-binding domain to acquire voltage and ligand-sensitive gating. The same modularity principle can be exploited in the design of synthetic channels in which the Kcv pore is coupled to orthogonal sensor domains. These synthetic channels exhibit new gating properties like a sensitivity to light or Ca2+, which originate from their attached sensor domains.
期刊介绍:
EMBO Reports is a scientific journal that specializes in publishing research articles in the fields of molecular biology, cell biology, and developmental biology. The journal is known for its commitment to publishing high-quality, impactful research that provides novel physiological and functional insights. These insights are expected to be supported by robust evidence, with independent lines of inquiry validating the findings.
The journal's scope includes both long and short-format papers, catering to different types of research contributions. It values studies that:
Communicate major findings: Articles that report significant discoveries or advancements in the understanding of biological processes at the molecular, cellular, and developmental levels.
Confirm important findings: Research that validates or supports existing knowledge in the field, reinforcing the reliability of previous studies.
Refute prominent claims: Studies that challenge or disprove widely accepted ideas or hypotheses in the biosciences, contributing to the correction and evolution of scientific understanding.
Present null data: Papers that report negative results or findings that do not support a particular hypothesis, which are crucial for the scientific process as they help to refine or redirect research efforts.
EMBO Reports is dedicated to maintaining high standards of scientific rigor and integrity, ensuring that the research it publishes contributes meaningfully to the advancement of knowledge in the life sciences. By covering a broad spectrum of topics and encouraging the publication of both positive and negative results, the journal plays a vital role in promoting a comprehensive and balanced view of scientific inquiry.