心力衰竭的分子表型:基于人群队列的大规模蛋白质组学。

IF 6 2区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Carolina G Downie, Joseph J Shearer, Kayode O Kuku, Suzette J Bielinski, Jorge R Kizer, Bruce M Psaty, Jungnam Joo, Véronique L Roger
{"title":"心力衰竭的分子表型:基于人群队列的大规模蛋白质组学。","authors":"Carolina G Downie, Joseph J Shearer, Kayode O Kuku, Suzette J Bielinski, Jorge R Kizer, Bruce M Psaty, Jungnam Joo, Véronique L Roger","doi":"10.1161/CIRCGEN.124.004953","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Heart failure (HF) is a heterogeneous syndrome with high mortality. The need for a new taxonomy of HF is recognized; up to now, such phenomapping efforts have primarily used clinical data. Proteomics offers potential for more precise phenotypic identification and mechanistic insights. However, few phenomapping studies have used this approach, and all have focused on targeted cardiovascular proteomics panels and a restricted HF ejection fraction group.</p><p><strong>Methods: </strong>We measured over 7000 plasma proteins in a population-based cohort of 1351 patients with HF, used k-means clustering to identify distinct phenogroups, and compared their clinical characteristics and all-cause mortality.</p><p><strong>Results: </strong>Three proteomics-defined phenogroups were identified, with substantial differences in survival (phenogroup 1 5-year survival probability, 65% [95% CI, 61%-68%]; phenogroup 2, 45% [40%-51%]; phenogroup 3, 26% [22%-30%]), independent of clinical characteristics. Phenogroups also exhibited differences in several measures suggesting poorer health, including NT-proBNP (N-terminal pro-B-type natriuretic peptide), kidney function, and Meta-Analysis Global Group in Chronic Heart Failure scores, but did not differ by ejection fraction or New York Heart Association class.</p><p><strong>Conclusions: </strong>Our study demonstrates that molecular phenomapping can stratify patients with HF into distinct subgroups that go beyond predefined clinical classifications.</p>","PeriodicalId":10326,"journal":{"name":"Circulation: Genomic and Precision Medicine","volume":" ","pages":"e004953"},"PeriodicalIF":6.0000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular Phenogroups in Heart Failure: Large-Scale Proteomics in a Population-Based Cohort.\",\"authors\":\"Carolina G Downie, Joseph J Shearer, Kayode O Kuku, Suzette J Bielinski, Jorge R Kizer, Bruce M Psaty, Jungnam Joo, Véronique L Roger\",\"doi\":\"10.1161/CIRCGEN.124.004953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Heart failure (HF) is a heterogeneous syndrome with high mortality. The need for a new taxonomy of HF is recognized; up to now, such phenomapping efforts have primarily used clinical data. Proteomics offers potential for more precise phenotypic identification and mechanistic insights. However, few phenomapping studies have used this approach, and all have focused on targeted cardiovascular proteomics panels and a restricted HF ejection fraction group.</p><p><strong>Methods: </strong>We measured over 7000 plasma proteins in a population-based cohort of 1351 patients with HF, used k-means clustering to identify distinct phenogroups, and compared their clinical characteristics and all-cause mortality.</p><p><strong>Results: </strong>Three proteomics-defined phenogroups were identified, with substantial differences in survival (phenogroup 1 5-year survival probability, 65% [95% CI, 61%-68%]; phenogroup 2, 45% [40%-51%]; phenogroup 3, 26% [22%-30%]), independent of clinical characteristics. Phenogroups also exhibited differences in several measures suggesting poorer health, including NT-proBNP (N-terminal pro-B-type natriuretic peptide), kidney function, and Meta-Analysis Global Group in Chronic Heart Failure scores, but did not differ by ejection fraction or New York Heart Association class.</p><p><strong>Conclusions: </strong>Our study demonstrates that molecular phenomapping can stratify patients with HF into distinct subgroups that go beyond predefined clinical classifications.</p>\",\"PeriodicalId\":10326,\"journal\":{\"name\":\"Circulation: Genomic and Precision Medicine\",\"volume\":\" \",\"pages\":\"e004953\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Circulation: Genomic and Precision Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1161/CIRCGEN.124.004953\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation: Genomic and Precision Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/CIRCGEN.124.004953","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

背景:心力衰竭(HF)是一种高死亡率的异质性综合征。人们认识到需要一种新的氟化氢分类方法;到目前为止,这种现象绘制工作主要使用临床数据。蛋白质组学提供了更精确的表型鉴定和机制见解的潜力。然而,很少有现象图研究使用了这种方法,而且所有的研究都集中在靶向心血管蛋白质组学小组和限制性心衰射血分数组。方法:我们在1351例心衰患者的人群队列中检测了超过7000种血浆蛋白,使用k-means聚类来识别不同的表型组,并比较他们的临床特征和全因死亡率。结果:确定了三个蛋白质组学定义的表型组,其生存率存在显着差异(表型组1 5年生存率为65% [95% CI, 61%-68%];表型组2,45% [40%-51%];表型组3,26%[22%-30%]),与临床特征无关。表型组在一些健康状况较差的指标上也表现出差异,包括NT-proBNP (n端前b型利钠肽)、肾功能和慢性心力衰竭荟萃分析全球组评分,但在射血分数或纽约心脏协会分级上没有差异。结论:我们的研究表明,分子现象定位可以将心衰患者划分为不同的亚组,而不是预先定义的临床分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Molecular Phenogroups in Heart Failure: Large-Scale Proteomics in a Population-Based Cohort.

Background: Heart failure (HF) is a heterogeneous syndrome with high mortality. The need for a new taxonomy of HF is recognized; up to now, such phenomapping efforts have primarily used clinical data. Proteomics offers potential for more precise phenotypic identification and mechanistic insights. However, few phenomapping studies have used this approach, and all have focused on targeted cardiovascular proteomics panels and a restricted HF ejection fraction group.

Methods: We measured over 7000 plasma proteins in a population-based cohort of 1351 patients with HF, used k-means clustering to identify distinct phenogroups, and compared their clinical characteristics and all-cause mortality.

Results: Three proteomics-defined phenogroups were identified, with substantial differences in survival (phenogroup 1 5-year survival probability, 65% [95% CI, 61%-68%]; phenogroup 2, 45% [40%-51%]; phenogroup 3, 26% [22%-30%]), independent of clinical characteristics. Phenogroups also exhibited differences in several measures suggesting poorer health, including NT-proBNP (N-terminal pro-B-type natriuretic peptide), kidney function, and Meta-Analysis Global Group in Chronic Heart Failure scores, but did not differ by ejection fraction or New York Heart Association class.

Conclusions: Our study demonstrates that molecular phenomapping can stratify patients with HF into distinct subgroups that go beyond predefined clinical classifications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Circulation: Genomic and Precision Medicine
Circulation: Genomic and Precision Medicine Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
9.20
自引率
5.40%
发文量
144
期刊介绍: Circulation: Genomic and Precision Medicine is a distinguished journal dedicated to advancing the frontiers of cardiovascular genomics and precision medicine. It publishes a diverse array of original research articles that delve into the genetic and molecular underpinnings of cardiovascular diseases. The journal's scope is broad, encompassing studies from human subjects to laboratory models, and from in vitro experiments to computational simulations. Circulation: Genomic and Precision Medicine is committed to publishing studies that have direct relevance to human cardiovascular biology and disease, with the ultimate goal of improving patient care and outcomes. The journal serves as a platform for researchers to share their groundbreaking work, fostering collaboration and innovation in the field of cardiovascular genomics and precision medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信