Jingyun Chen, Jianghao Ren, Chaolei Zhang, Yang Lv, Jingbin Zhou, Weiliang Jiang, Chaojie Huang, Liping Cao
{"title":"靶向递送PKMYT1抑制剂RP-6306通过有丝分裂突变介导胰腺癌PANoptosis。","authors":"Jingyun Chen, Jianghao Ren, Chaolei Zhang, Yang Lv, Jingbin Zhou, Weiliang Jiang, Chaojie Huang, Liping Cao","doi":"10.1038/s41419-025-07835-2","DOIUrl":null,"url":null,"abstract":"<p><p>Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant tumor often diagnosed in advanced stages due to its subtle early symptoms, making surgical options nonviable and requiring systemic chemotherapy. Current treatments mainly utilize gemcitabine, which provides limited efficacy. PKMYT1, a serine/threonine protein kinase crucial for cell cycle regulation, is overexpressed in PDAC and correlates with poor prognosis. Treatment with the PKMYT1 inhibitor RP-6306 promotes rapid mitotic entry, resulting in DNA damage and mitotic catastrophe, thereby inducing PANoptosis. RP-6306 effectively inhibits PDAC growth in vitro and in vivo, and shows enhanced anti-tumor activity when combined with gemcitabine, also reducing metastasis. However, gemcitabine has notable systemic toxicity. To target cancer cells more specifically, we utilized vesicles derived from cell membranes (BxPC-3M) to deliver a combination of RP-6306 and gemcitabine (GEM + RP-6306@BxPC-3M). This formulation effectively targets homotypic tumor cells and significantly inhibits tumor growth both in vitro and in vivo. These findings highlight the role of RP-6306 in inducing PANoptosis, characterize PANoptosis as a novel form of cell death associated with mitotic catastrophe, and confirm the synergistic antitumor activity of RP-6306 and gemcitabine in PDAC. Moreover, GEM + RP-6306@BxPC-3M exhibits improved safety and enhanced antitumor efficacy.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":"16 1","pages":"526"},"PeriodicalIF":9.6000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12263950/pdf/","citationCount":"0","resultStr":"{\"title\":\"Targeted delivery of the PKMYT1 inhibitor RP-6306 mediates PANoptosis in pancreatic cancer via mitotic catastrophe.\",\"authors\":\"Jingyun Chen, Jianghao Ren, Chaolei Zhang, Yang Lv, Jingbin Zhou, Weiliang Jiang, Chaojie Huang, Liping Cao\",\"doi\":\"10.1038/s41419-025-07835-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant tumor often diagnosed in advanced stages due to its subtle early symptoms, making surgical options nonviable and requiring systemic chemotherapy. Current treatments mainly utilize gemcitabine, which provides limited efficacy. PKMYT1, a serine/threonine protein kinase crucial for cell cycle regulation, is overexpressed in PDAC and correlates with poor prognosis. Treatment with the PKMYT1 inhibitor RP-6306 promotes rapid mitotic entry, resulting in DNA damage and mitotic catastrophe, thereby inducing PANoptosis. RP-6306 effectively inhibits PDAC growth in vitro and in vivo, and shows enhanced anti-tumor activity when combined with gemcitabine, also reducing metastasis. However, gemcitabine has notable systemic toxicity. To target cancer cells more specifically, we utilized vesicles derived from cell membranes (BxPC-3M) to deliver a combination of RP-6306 and gemcitabine (GEM + RP-6306@BxPC-3M). This formulation effectively targets homotypic tumor cells and significantly inhibits tumor growth both in vitro and in vivo. These findings highlight the role of RP-6306 in inducing PANoptosis, characterize PANoptosis as a novel form of cell death associated with mitotic catastrophe, and confirm the synergistic antitumor activity of RP-6306 and gemcitabine in PDAC. Moreover, GEM + RP-6306@BxPC-3M exhibits improved safety and enhanced antitumor efficacy.</p>\",\"PeriodicalId\":9734,\"journal\":{\"name\":\"Cell Death & Disease\",\"volume\":\"16 1\",\"pages\":\"526\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12263950/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Death & Disease\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41419-025-07835-2\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-025-07835-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Targeted delivery of the PKMYT1 inhibitor RP-6306 mediates PANoptosis in pancreatic cancer via mitotic catastrophe.
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant tumor often diagnosed in advanced stages due to its subtle early symptoms, making surgical options nonviable and requiring systemic chemotherapy. Current treatments mainly utilize gemcitabine, which provides limited efficacy. PKMYT1, a serine/threonine protein kinase crucial for cell cycle regulation, is overexpressed in PDAC and correlates with poor prognosis. Treatment with the PKMYT1 inhibitor RP-6306 promotes rapid mitotic entry, resulting in DNA damage and mitotic catastrophe, thereby inducing PANoptosis. RP-6306 effectively inhibits PDAC growth in vitro and in vivo, and shows enhanced anti-tumor activity when combined with gemcitabine, also reducing metastasis. However, gemcitabine has notable systemic toxicity. To target cancer cells more specifically, we utilized vesicles derived from cell membranes (BxPC-3M) to deliver a combination of RP-6306 and gemcitabine (GEM + RP-6306@BxPC-3M). This formulation effectively targets homotypic tumor cells and significantly inhibits tumor growth both in vitro and in vivo. These findings highlight the role of RP-6306 in inducing PANoptosis, characterize PANoptosis as a novel form of cell death associated with mitotic catastrophe, and confirm the synergistic antitumor activity of RP-6306 and gemcitabine in PDAC. Moreover, GEM + RP-6306@BxPC-3M exhibits improved safety and enhanced antitumor efficacy.
期刊介绍:
Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism.
Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following:
Experimental medicine
Cancer
Immunity
Internal medicine
Neuroscience
Cancer metabolism