Lisa Kohrs, Falk F R Buettner, Juliane Lokau, Christoph Garbers
{"title":"白细胞介素-6家族细胞因子受糖基化调控。","authors":"Lisa Kohrs, Falk F R Buettner, Juliane Lokau, Christoph Garbers","doi":"10.1042/BCJ20240769","DOIUrl":null,"url":null,"abstract":"<p><p>Cytokines of the interleukin-6 (IL-6) family are important soluble mediators with crucial roles in developmental processes, tissue homeostasis, regeneration, and immune cell differentiation. Overshooting activities of IL-6 and other cytokines are found in all inflammatory diseases, making them attractive therapeutic targets for the treatment of patients with rheumatoid arthritis or inflammatory bowel disease. Multiple mechanisms exist that control cytokine activity and prevent excessive cytokine signaling under normal conditions. In this review, we summarize how the biology of IL-6 family cytokines is regulated by glycosylation, a process in which carbohydrate chains are covalently linked to protein molecules. The attached carbohydrates, which are generated and modified by enzymes located in the endoplasmic reticulum and/or the Golgi apparatus, can display huge structural diversity and are linked either via asparagine (N-glycans), serine and threonine (O-glycans), or tryptophan residues (C-glycans). We describe how glycosylation affects synthesis, receptor binding, signaling and plasma half-life of the cytokines and protein stability, transport to the cell surface, ligand binding, proteolysis, internalization, and recycling of their receptors. Finally, we discuss how knowledge about glycosylation can be used for the design of novel therapeutics targeting IL-6 family cytokines or their receptors.</p>","PeriodicalId":8825,"journal":{"name":"Biochemical Journal","volume":"482 10","pages":"535-551"},"PeriodicalIF":4.3000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12179393/pdf/","citationCount":"0","resultStr":"{\"title\":\"The biology of interleukin-6 family cytokines is regulated by glycosylation.\",\"authors\":\"Lisa Kohrs, Falk F R Buettner, Juliane Lokau, Christoph Garbers\",\"doi\":\"10.1042/BCJ20240769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cytokines of the interleukin-6 (IL-6) family are important soluble mediators with crucial roles in developmental processes, tissue homeostasis, regeneration, and immune cell differentiation. Overshooting activities of IL-6 and other cytokines are found in all inflammatory diseases, making them attractive therapeutic targets for the treatment of patients with rheumatoid arthritis or inflammatory bowel disease. Multiple mechanisms exist that control cytokine activity and prevent excessive cytokine signaling under normal conditions. In this review, we summarize how the biology of IL-6 family cytokines is regulated by glycosylation, a process in which carbohydrate chains are covalently linked to protein molecules. The attached carbohydrates, which are generated and modified by enzymes located in the endoplasmic reticulum and/or the Golgi apparatus, can display huge structural diversity and are linked either via asparagine (N-glycans), serine and threonine (O-glycans), or tryptophan residues (C-glycans). We describe how glycosylation affects synthesis, receptor binding, signaling and plasma half-life of the cytokines and protein stability, transport to the cell surface, ligand binding, proteolysis, internalization, and recycling of their receptors. Finally, we discuss how knowledge about glycosylation can be used for the design of novel therapeutics targeting IL-6 family cytokines or their receptors.</p>\",\"PeriodicalId\":8825,\"journal\":{\"name\":\"Biochemical Journal\",\"volume\":\"482 10\",\"pages\":\"535-551\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12179393/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1042/BCJ20240769\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BCJ20240769","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The biology of interleukin-6 family cytokines is regulated by glycosylation.
Cytokines of the interleukin-6 (IL-6) family are important soluble mediators with crucial roles in developmental processes, tissue homeostasis, regeneration, and immune cell differentiation. Overshooting activities of IL-6 and other cytokines are found in all inflammatory diseases, making them attractive therapeutic targets for the treatment of patients with rheumatoid arthritis or inflammatory bowel disease. Multiple mechanisms exist that control cytokine activity and prevent excessive cytokine signaling under normal conditions. In this review, we summarize how the biology of IL-6 family cytokines is regulated by glycosylation, a process in which carbohydrate chains are covalently linked to protein molecules. The attached carbohydrates, which are generated and modified by enzymes located in the endoplasmic reticulum and/or the Golgi apparatus, can display huge structural diversity and are linked either via asparagine (N-glycans), serine and threonine (O-glycans), or tryptophan residues (C-glycans). We describe how glycosylation affects synthesis, receptor binding, signaling and plasma half-life of the cytokines and protein stability, transport to the cell surface, ligand binding, proteolysis, internalization, and recycling of their receptors. Finally, we discuss how knowledge about glycosylation can be used for the design of novel therapeutics targeting IL-6 family cytokines or their receptors.
期刊介绍:
Exploring the molecular mechanisms that underpin key biological processes, the Biochemical Journal is a leading bioscience journal publishing high-impact scientific research papers and reviews on the latest advances and new mechanistic concepts in the fields of biochemistry, cellular biosciences and molecular biology.
The Journal and its Editorial Board are committed to publishing work that provides a significant advance to current understanding or mechanistic insights; studies that go beyond observational work using in vitro and/or in vivo approaches are welcomed.
Painless publishing:
All papers undergo a rigorous peer review process; however, the Editorial Board is committed to ensuring that, if revisions are recommended, extra experiments not necessary to the paper will not be asked for.
Areas covered in the journal include:
Cell biology
Chemical biology
Energy processes
Gene expression and regulation
Mechanisms of disease
Metabolism
Molecular structure and function
Plant biology
Signalling