{"title":"2型糖尿病的心脏底物代谢。","authors":"Jordan S F Chan, Tanin Shafaati, John R Ussher","doi":"10.1042/BCJ20240189","DOIUrl":null,"url":null,"abstract":"<p><p>As the most metabolically demanding organ on a per gram basis, substrate metabolism in the heart is intricately linked to cardiac function. Virtually all major cardiovascular pathologies are associated with perturbations in cardiac substrate metabolism, and increasing evidence supports that these perturbations in substrate metabolism can directly contribute to cardiac dysfunction. Furthermore, type 2 diabetes (T2D) is a major risk factor for increased cardiovascular disease burden, while also being characterized by a very distinct metabolic profile in the heart. This includes increases in cardiac fatty oxidation rates and a robust reduction in cardiac glucose oxidation rates. Herein, we will describe the primary mechanisms responsible for the increase in cardiac fatty acid oxidation and decrease in cardiac glucose oxidation during T2D, while also detailing perturbations in cardiac ketone and amino acid metabolism. In addition, we will interrogate preclinical studies that have addressed whether correcting perturbations in cardiac substrate metabolism may have clinical utility against ischemic heart disease, diabetic cardiomyopathy, or heart failure associated with T2D. Lastly, we will consider the translational potential of such an approach to manage cardiovascular disease in people living with T2D.</p>","PeriodicalId":8825,"journal":{"name":"Biochemical Journal","volume":"482 10","pages":"499-518"},"PeriodicalIF":4.3000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12203942/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cardiac substrate metabolism in type 2 diabetes.\",\"authors\":\"Jordan S F Chan, Tanin Shafaati, John R Ussher\",\"doi\":\"10.1042/BCJ20240189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As the most metabolically demanding organ on a per gram basis, substrate metabolism in the heart is intricately linked to cardiac function. Virtually all major cardiovascular pathologies are associated with perturbations in cardiac substrate metabolism, and increasing evidence supports that these perturbations in substrate metabolism can directly contribute to cardiac dysfunction. Furthermore, type 2 diabetes (T2D) is a major risk factor for increased cardiovascular disease burden, while also being characterized by a very distinct metabolic profile in the heart. This includes increases in cardiac fatty oxidation rates and a robust reduction in cardiac glucose oxidation rates. Herein, we will describe the primary mechanisms responsible for the increase in cardiac fatty acid oxidation and decrease in cardiac glucose oxidation during T2D, while also detailing perturbations in cardiac ketone and amino acid metabolism. In addition, we will interrogate preclinical studies that have addressed whether correcting perturbations in cardiac substrate metabolism may have clinical utility against ischemic heart disease, diabetic cardiomyopathy, or heart failure associated with T2D. Lastly, we will consider the translational potential of such an approach to manage cardiovascular disease in people living with T2D.</p>\",\"PeriodicalId\":8825,\"journal\":{\"name\":\"Biochemical Journal\",\"volume\":\"482 10\",\"pages\":\"499-518\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12203942/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1042/BCJ20240189\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BCJ20240189","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
As the most metabolically demanding organ on a per gram basis, substrate metabolism in the heart is intricately linked to cardiac function. Virtually all major cardiovascular pathologies are associated with perturbations in cardiac substrate metabolism, and increasing evidence supports that these perturbations in substrate metabolism can directly contribute to cardiac dysfunction. Furthermore, type 2 diabetes (T2D) is a major risk factor for increased cardiovascular disease burden, while also being characterized by a very distinct metabolic profile in the heart. This includes increases in cardiac fatty oxidation rates and a robust reduction in cardiac glucose oxidation rates. Herein, we will describe the primary mechanisms responsible for the increase in cardiac fatty acid oxidation and decrease in cardiac glucose oxidation during T2D, while also detailing perturbations in cardiac ketone and amino acid metabolism. In addition, we will interrogate preclinical studies that have addressed whether correcting perturbations in cardiac substrate metabolism may have clinical utility against ischemic heart disease, diabetic cardiomyopathy, or heart failure associated with T2D. Lastly, we will consider the translational potential of such an approach to manage cardiovascular disease in people living with T2D.
期刊介绍:
Exploring the molecular mechanisms that underpin key biological processes, the Biochemical Journal is a leading bioscience journal publishing high-impact scientific research papers and reviews on the latest advances and new mechanistic concepts in the fields of biochemistry, cellular biosciences and molecular biology.
The Journal and its Editorial Board are committed to publishing work that provides a significant advance to current understanding or mechanistic insights; studies that go beyond observational work using in vitro and/or in vivo approaches are welcomed.
Painless publishing:
All papers undergo a rigorous peer review process; however, the Editorial Board is committed to ensuring that, if revisions are recommended, extra experiments not necessary to the paper will not be asked for.
Areas covered in the journal include:
Cell biology
Chemical biology
Energy processes
Gene expression and regulation
Mechanisms of disease
Metabolism
Molecular structure and function
Plant biology
Signalling